
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2013

The Efficient Implementation of Correction
Procedure via Reconstruction with GPU
Computing
Ben James Zimmerman
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Aerospace Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Zimmerman, Ben James, "The Efficient Implementation of Correction Procedure via Reconstruction with GPU Computing" (2013).
Graduate Theses and Dissertations. 13102.
https://lib.dr.iastate.edu/etd/13102

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F13102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=lib.dr.iastate.edu%2Fetd%2F13102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/13102?utm_source=lib.dr.iastate.edu%2Fetd%2F13102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

The efficient implementation of

correction procedure via reconstruction with GPU computing

by

Ben J. Zimmerman

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Aerospace Engineering

Program of Study Committee:

Zhi J. Wang, Major Professor

Alric P. Rothmayer

Amber K. Mitra

Iowa State University

Ames, Iowa

2013

Copyright c© Ben J. Zimmerman, 2013. All rights reserved.

www.manaraa.com

ii

DEDICATION

To my Mother and Father,

whose support made this possible.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . vii

ABSTRACT . viii

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. GPU CUDA COMPUTING . 4

2.1 GPU architecture . 4

2.2 GPU optimization . 6

CHAPTER 3. HIGH-ORDER CPR METHOD 8

3.1 Correction procedure via reconstruction . 8

3.1.1 CPR formulation . 8

3.1.2 High-order elements . 18

3.2 Riemann solver . 22

3.2.1 Rusanov flux . 22

3.2.2 Roe flux . 23

3.3 Time-stepping . 25

CHAPTER 4. CUDA IMPLEMENTATION . 26

4.1 Data initialization . 26

4.2 CUDA implementation . 34

4.2.1 General CUDA kernels . 35

4.2.2 Inviscid CUDA code . 38

www.manaraa.com

iv

4.2.3 Viscous CUDA code . 43

4.2.4 Additional CUDA kernels . 56

CHAPTER 5. RESULTS . 59

5.1 CUDA verification . 59

5.2 CUDA performance . 65

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 68

APPENDIX A. SAMPLE CUDA CODE . 70

APPENDIX B. DERIVATION OF CORRECTION COEFFICIENTS 72

BIBLIOGRAPHY . 74

www.manaraa.com

v

LIST OF TABLES

Table 3.1 Lifting coefficients for P 1 − P 5 for linear element [-1,1]. 12

Table 3.2 Lagrange interpolation coefficients for P 2. 13

Table 3.3 Viscous DG correction coefficient. 17

Table 4.1 Thread switching . 38

Table 5.1 Inviscid GPU code verification (P 2) . 60

Table 5.2 Viscous GPU code verification (P 2) . 60

Table 5.3 Separation and reattachment locations 64

www.manaraa.com

vi

LIST OF FIGURES

Figure 2.1 CUDA cards and shared multiprocessors [19] 5

Figure 2.2 CUDA threads and blocks [19] . 6

Figure 3.1 Computational domain Ω . 10

Figure 3.2 Solution points on a hexahedral face for P 2 and P 3 14

Figure 3.3 Transformation from physical to standard element 18

Figure 3.4 Shared face and points between two cells 22

Figure 4.1 Face flux point numbering for P 2 . 44

Figure 5.1 Pressure contours for acoustic cylinder case 61

Figure 5.2 Pressure fluctuations (p′) . 62

Figure 5.3 Computational grid . 63

Figure 5.4 Q-criterion colored by U-velocity . 63

Figure 5.5 Mean u-velocity field . 63

Figure 5.6 Mean coefficient of pressure (Cp) . 64

Figure 5.7 Profiling for CUDA optimizations . 66

Figure 5.8 Complete optimization profile . 66

Figure 5.9 Performance of GPU code compared to CPU code (inviscid) at P 1 to P 4 66

Figure 5.10 Performance of GPU code compared to CPU code (viscous) at P 1 to P 4 67

Figure B.1 One-dimensional element for P 2 . 73

www.manaraa.com

vii

ACKNOWLEDGEMENTS

Thank you to my advisor, Dr. Z. J. Wang, for his guidance and patience with me. His en-

couragement and support lead me to find my passion, which I am forever grateful for. Takanori

Haga, Meilin Yu, Varun Vikas, and Lei Shi; thank you for the conversations we had, and the

motivation you gave.

www.manaraa.com

viii

ABSTRACT

Computational fluid dynamics (CFD) has long been a useful tool to model fluid flow prob-

lems across many engineering disciplines, and while problem size, complexity, and difficulty

continue to expand, the demands for robustness and accuracy grow. Furthermore, generating

high-order accurate solutions has escalated the required computational resources, and as prob-

lems continue to increase in complexity, so will computational needs such as memory require-

ments and calculation time for accurate flow field prediction. To improve upon computational

time, vast amounts of computational power and resources are employed, but even over dozens

to hundreds of central processing units (CPUs), the required computational time to formulate

solutions can be weeks, months, or longer, which is particularly true when generating high-order

accurate solutions over large computational domains. One response to lower the computational

time for CFD problems is to implement graphical processing units (GPUs) with current CFD

solvers. GPUs have illustrated the ability to solve problems orders of magnitude faster than

their CPU counterparts with identical accuracy. The goal of the presented work is to combine

a CFD solver and GPU computing with the intent to solve complex problems at a high-order

of accuracy while lowering the computational time required to generate the solution. The CFD

solver should have high-order spacial capabilities to evaluate small fluctuations and fluid struc-

tures not generally captured by lower-order methods (2nd and 1st order) and be efficient for

the GPU architecture. This research combines the high-order Correction Procedure via Re-

construction (CPR) method with compute unified device architecture (CUDA) from NVIDIA

to reach these goals. In addition, the study demonstrates accuracy of the developed solver by

comparing results with other solvers and exact solutions. Solving CFD problems accurately

and quickly are two factors to consider for the next generation of solvers. GPU computing is

a step forward for the CFD community in solving both current and up-coming problems fast

and with high accuracy.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Computational fluid dynamics (CFD) is widely used throughout engineering and science

disciplines for fluid flow evaluation and analysis. The use of low-order methods is popular in

industrial settings due to robustness of the methods, but they are less accurate and can require

large amounts of grid points to reach a set error criteria. These grids continue to exponentially

grow as the problems to be solved become increasingly complex in terms of geometry and flow

resolution requirements, increasing the computational cost. High-order methods (higher than

2nd order) are more accurate and can reach a set error criteria faster than lower order methods

[1], but are more complicated and not as robust. These methods are a necessity, however,

when considering aeroacoustic problems, where the numerical dissipation associated with low-

order methods is infeasible for evaluation and a high number of grid points coupled with small

time-steps are demanded when simulating [28]. Furthermore, complicated fluid structures in

flows are uncapturable by low-order schemes unless high grid resolution is employed in specific

areas within the domain. Interest is apparent in continued development of high-order methods

to improve on robustness, efficiency, and implementation. In particular, the efficiency and

implementation aspects of high-order methods is considered in this work.

Running CFD solvers is traditionally completed on servers of central processing units

(CPUs). When complicated geometries or high-resolution requirements demand large num-

bers of grid points, the computational cost cannot be ignored. Large problems, even when

partitioned and ran across multiple processors, can require a significant amount of computa-

tional time to complete while consuming considerable amounts of CPU resources. The current

work focuses on implementation with graphic processing units (GPUs) to calculate said prob-

lems quickly. Recently, interests have shifted to NVIDIA’s compute unified device architec-

ture (CUDA). CUDA has already shown promising results when applied to aerospace sciences

www.manaraa.com

2

[27, 13, 8], achieving considerable speed-ups when compared to existing CPU codes. The results

indicate that large scale problems, which required CPU servers to generate solutions, can be

completed with GPU workstations, consuming less power and computational resources while

generating the solution in a comparable, or even faster time frame. Implementing a solver

efficiently with GPU CUDA computing to achieve similar results is the goal of the current

work.

The high-order method for CUDA implementation should be compact and efficient for use

with GPU architecture. The industry standard finite volume (FV) method [2, 9] is robust

and easy to implement, but the solution reconstruction is not local. It involves a least-squares

formulation using neighboring cell data, and since each unknown has a unique stencil, the least

squares inversion must be either completed every time step or stored. Applying high-order

accuracy to the method implies that completing the inversion every step will consume large

amounts of computational time, whereas storing the data results in a large memory requirement.

Hence, a method whose solution reconstruction is completed locally per cell is preferable.

Recently, the three-dimensional correction procedure via reconstruction (CPR) method has

been developed [32] for mixed grids, including tetrahedrons, triangular prism, and even more

recently, hexahedrals. The CPR method was developed to improved the efficiency of other

high-order methods, including discontinuous Galerkin (DG) [4, 5, 7], spectral volume (SV) [30,

17], staggered grid (SG) multi-domain [15, 14], and spectral difference (SD) [16, 25] methods.

Additionally, it unified all these methods [29]. Due to the efficiency of the CPR method, it

is chosen for three-dimensional implementation with GPU CUDA computing. Element types

are also considered for CUDA implementation. Triangular cells for the two-dimensional CPR

method is currently implemented with CUDA [11] where exceptional increase in performance

is demonstrated when compared to the CPU implementation. Operations across quadrilateral

cells are more efficient, however, because the operations are completed in a one-dimensional

manner. Thus, when investigating elements for three-dimensional efficiency, hexahedral cells are

the obvious choice. In addition, when compared to other elements, such as tetrahedral cells,

hexahedrals have illustrated higher efficiency and accuracy for viscous boundary layers [24].

Therefore, this thesis is focused on the implementation of the CPR method with hexahedral

www.manaraa.com

3

cells.

The thesis is composed as follows, Chapter 2 covers GPU CUDA computing, explaining both

GPU architecture and code optimization. Chapter 3 derives the CPR method, applies high-

order elements, and outlines the Riemann solvers and time-stepping implemented. Chapter 4

discusses the implementation of the CPR method to the GPU. Chapter 5 covers results of the

GPU code, and Chapter 6 draws the conclusions and outlines potential future work.

www.manaraa.com

4

CHAPTER 2. GPU CUDA COMPUTING

Graphic processing units (GPUs) were mostly used for graphics acceleration, calculating

images shown on a computer screen. Recently, GPUs have shown the ability to tackle more

general problems at much faster computing speeds than its central processing unit (CPU)

counterpart. In 2006, NVIDIA released compute unified device architecture, or CUDA, for

a few of their cards [19]. Since then, NVIDIA has continued to update their GPU hardware

and CUDA capabilities, enabling CUDA to handle larger problems and generate solutions

extremely fast. This chapter focuses on the GPU computing architecture and the optimizations

to consider when implementing. Section 2.1 covers the architecture, while Section 2.2 discusses

the optimization strategy.

2.1 GPU architecture

The architecture and capabilities of GPUs varies from card to card. Older GPUs (such as

the GeForce GT and 8000 series) only support single precision computing and have limited

memory. Newer cards (such as the Tesla C2070) contain over 10 times the memory as some

older cards and support double precision. Another aspect is the shared multi-processor (SM)

count. A GPUs SM count determines how many tasks the GPU can preform at once. Figure 2.1

illustrates the importance of SMs. The GPU on the left, with 2 SMs, can only run computations

on two of the tasks in parallel, while the GPU on the right can run four tasks in parallel. Hence,

a GPU with more SMs will complete a problem faster than a GPU with less SMs.

The GPU is composed of grids, blocks, and threads. When a GPU function (called a

kernel) is launched and executed by CUDA threads, the GPU forms a grid. The grid is either

one or two-dimensions, composed of blocks, while the blocks are one, two, or three-dimensions,

www.manaraa.com

5

Figure 2.1 CUDA cards and shared multiprocessors [19]

composed of threads. The number of threads allowed per block is 512 on older cards, and

1024 on newer cards. As an example of the GPU architecture, consider figure 2.2. The grid is

two-dimensional, (3 x 2), and contains a total of six blocks. Each block is also two-dimensional,

(4 x 3), and contains twelve total threads. Total threads for the CUDA grid number the threads

per block times the total blocks, or 72 in the example. Each thread and block have unique

identification which can be accessed within the kernels by built-in threadIdx and blockIdx

variables with a .x, .y, or .z extension for each of the three dimensions. Additionally, the

variables blockDim and gridDim access the dimension of the blocks and grids. In the example

from the figure, gridDim.x = 3, gridDim.y = 2, blockDim.x = 4, blockDim.y = 3, blockIdx.x =

0, 1, 2, blockIdx.y = 0, 1, threadIdx.x = 0, 1, 2, 3, and threadIdx.y = 0, 1, 2 (thread indexing

starts at 0). For an example of threads and blocks applied in a CUDA kernel, see Appendix

A.

www.manaraa.com

6

Figure 2.2 CUDA threads and blocks [19]

2.2 GPU optimization

Optimizing the CUDA application is extremely important, and will enable the GPU to

achieve best performance from the code. First, GPU memory access and memory transfer

must be coalesced and minimized. To ensure coalesced memory access, neighboring threads

access neighboring cells in memory, which allows fast memory access. If neighboring threads

access misaligned or scattered cells in memory, non-coalesced access can occur, and decayed

performance will be seen. Coalesced memory access is a high priority memory optimization [18]

and is imperative for an optimized CUDA program. Minimizing memory transfer is equally

important, since copying memory to and from the GPU is computationally expensive. Thus,

all required data for calculations are transfered into the GPU memory before starting any GPU

calculations. Once the necessary data is transfered, GPU calculations begin and data transfer

back to the CPU is minimized (the residual is transfered to the CPU and monitored rarely).

Only after the calculations are complete is all the necessary memory transfered back to the

www.manaraa.com

7

CPU for post-processing procedures.

The GPU contains multiple types of memory. Four important memory types for optimiza-

tion are global, textured, local, and shared. Global memory can be accessed by all threads

and is bounded to textured memory, but computations in global memory are slow. In addition,

global memory requires coalesced memory access for best performance, hence, global memory is

only accessed at the end of a GPU kernel for data transfer, so computations can be completed in

other kernels on this data. Once global memory is updated, the corresponding bounded texture

memory is updated, allowing for texture memory access on the data in later kernels. Texture

memory is cached and read only [18] allowing fast memory access within a GPU kernel, even if

the read is not coalesced, hence optimal performance is achieved when reading from textured

memory instead of global memory. The next memory type is local, which is local to the thread,

and access is as expensive as global memory [18], but computations are fast. Storage into local

memory is ideal when a thread will access the same location of local memory storage in a

later computation. The final memory is shared memory, which is the most important memory

for optimization purposes, as proper use of this memory can drastically improve performance.

Shared memory should be implemented when data is required by many threads within the same

block, or when data needs re-ordering for coalesced access. Additionally, shared memory has a

lifetime of the block, meaning allocation of this memory is done at a per block basis, whereas

textured and global memory lifetime is the application itself, and local memory has the lifetime

of a thread.

The proper use of GPU memory is key to developing CUDA applications. The performance

differences between optimized and unoptimized code is apparent, and is explored in Chapter

5. Correct use of the memory types explained are illustrated in Appendix A and throughout

Chapter 4.

www.manaraa.com

8

CHAPTER 3. HIGH-ORDER CPR METHOD

This chapter explains the high-order Correction Procedure via Reconstruction (CPR) for-

mulation. Section 3.1 derives the CPR method, Section 3.2 covers the Riemann solvers imple-

mented, and Section 3.3 shows the time integration scheme.

3.1 Correction procedure via reconstruction

The CPR method combines high-accuracy and compactness while retaining the efficiency

and simplicity of the finite difference method [31]. Section 3.1.1 derives the CPR method for

both the inviscid and viscous flux, and Section 3.1.2 covers the extension of the method to

high-order elements.

3.1.1 CPR formulation

This section is broken into two subsections. The first subsection will derive the CPR method

for the inviscid flux, or Euler equations. Then in the second subsection the CPR method for

the viscous flux, or Navier-Stokes equations, will be derived.

Inviscid flux

Consider the hyperbolic equation law given by,

∂Q

∂t
+ ~∇ · ~F (Q) = 0, (3.1.1)

www.manaraa.com

9

where Q is the state vector and ~F (Q) = (F (Q), G(Q), H(Q)) is the flux vector. The solution

vector, Q, takes the form,

Q =



ρ

ρu

ρv

ρw

e


, (3.1.2)

where ρ is the density, u, v, and w are the velocities in the x, y and z-directions, and e is the

total energy per unit volume. The inviscid-flux vector, ~F (Q), is,

~F (Q) = (F (Q), G(Q), H(Q)) =





ρu

p+ ρu2

ρuv

ρuw

u(e+ p)


,



ρv

ρuv

p+ ρv2

ρvw

v(e+ p)


,



ρw

ρuw

ρvw

p+ ρw2

w(e+ p)




, (3.1.3)

where p = (γ − 1)(e − 1
2ρ(u2 + v2 + w2)) is the pressure and γ is the ratio of specific heats.

Equation (3.1.1) can be written in the form,

∂Q

∂t
+
∂F (Q)

∂x
+
∂G(Q)

∂y
+
∂H(Q)

∂z
= 0. (3.1.4)

The computational domain Ω is split into N non-overlapping elements, where element i has

volume Vi. Equation (3.1.1) is integrated over the domain and multiplied by an arbitrary

weighting function W , ∫
Vi

[
∂Q

∂t
+ ~∇ · ~F (Q)

]
WdV. (3.1.5)

Applying integration by parts and the Gauss Divergence theorem to the above equation yields

the weighted residual form of equation 3.1.1,∫
Vi

∂Q

∂t
WdV +

∫
∂Vi

W ~F (Q) · ~ndS −
∫
Vi

~∇W · ~F (Q)dV = 0. (3.1.6)

To approximate the solution to Q on an element V , introduce Qi. The solution is assumed to

belong in the space of polynomials of degree k or less, meaning Qi ∈ P k(Vi), and no continuity

www.manaraa.com

10

Figure 3.1 Computational domain Ω

requirement across element interfaces is employed. Then, the numerical solution Qi must satisfy

(3.1.6), ∫
Vi

∂Qi
∂t

WdV +

∫
∂Vi

W ~F (Qi) · ~ndS −
∫
Vi

~∇W · ~F (Qi)dV = 0. (3.1.7)

At element interfaces,
∫
∂Vi

W ~F (Qi) · ~ndS is not directly defined due to discontinuities in the

solution. To provide element coupling, a common Riemann flux is used to replace the normal

flux, i.e.,

Fn(Qi) ≡ ~F (Qi) · ~n ≈ Fncom(Qi, Qi+, ~n), (3.1.8)

where Qi+ is the solution outside of element Vi. Equation (3.1.7) becomes,∫
Vi

∂Qi
∂t

WdV +

∫
∂Vi

WFncomdS −
∫
Vi

~∇W · ~F (Qi)dV = 0. (3.1.9)

Once again, apply integration by parts and the Gauss Divergence theroem to the final term in

equation 3.1.9 to yeild,∫
Vi

~∇W · ~F (Qi)dV =

∫
Vi

~∇ ·
[
~F (Qi)W

]
dV −

∫
Vi

~∇ · ~F (Qi)WdV

=

∫
∂Vi

~F (Qi)W · ~ndS −
∫
Vi

~∇ · ~F (Qi)WdV.

(3.1.10)

www.manaraa.com

11

Combining the result in equation (3.1.10) with equation (3.1.9) gives,∫
Vi

∂Qi
∂t

WdV +

∫
Vi

~∇ · ~F (Qi)WdV +

∫
∂Vi

[Fncom − Fn(Qi)]WdS = 0. (3.1.11)

The final term in equation (3.1.11) “penalizes” the normal flux difference, [Fn] = Fncom−Fn(Qi),

and can be viewed as a penalty term. Next, to change the surface integral into a volume integral

in equation (3.1.11), a “correction field”, δi ∈ P k(Vi), is introduced which is evaluated from a

“lifting operator” equation defined as,∫
∂Vi

W [Fn] dS =

∫
Vi

WδidV. (3.1.12)

Substituting equation (3.1.12) into equation (3.1.11) yeilds,∫
Vi

(
∂Qi
∂t

+ ~∇ · ~F (Qi) + δi

)
WdV = 0. (3.1.13)

The flux divergence is approximated by polynomials of degree k or less. This simplifies the

derivation, but ~∇ · ~F (Qi) does not necessarily reside in the space P k(Vi), hence a projection

term is employed to project ~∇ · ~F (Qi) into the proper space,∫
Vi

~∇ · ~F (Qi)dV =

∫
Vi

Π
[
~∇ · ~F (Qi)

]
dV. (3.1.14)

If the weighting function, W , is selected such that a unique solution exists, equation (3.1.13)

becomes,

∂Qi
∂t

+ Π
[
~∇ · ~F (Qi)

]
+ δi = 0. (3.1.15)

The definition of a correction field reduces the weighted residual formulation into a differential

formulation. To find the approximate solution Qi, define the degrees of freedom to be solution

values located at solution points (SP) at each element. Then equation (3.1.15) must hold at

every solution point in the domain, i.e.,

∂Qhi,j
∂t

+ Πj

[
~∇ · ~F (Qi)

]
+ δi,j = 0, (3.1.16)

where Πj

[
~∇ · ~F (Qi)

]
is the value of Π

[
~∇ · ~F (Qi)

]
at solution point j. The efficiency of the

method lies in calculating the correction function, δi. For linear triangles with straight faces,

www.manaraa.com

12

Table 3.1 Lifting coefficients for P 1 − P 5 for linear element [-1,1].

SP P 1 P 2 P 3 P 4 P 5

j αL,j αL,j αL,j αL,j αL,j
1 2.0 4.5 8.0 12.5 18.0

2 -1.0 -0.75 -0.5938 -0.2612 0.2513

3 - 1.5 0.9688 0.9375 0.8518

4 - - -2.0 -1.1451 -1.1244

5 - - - 0.5 1.3103

6 - - - - -3.0

once the solution points and flux points have been chosen, the correction at the solution points

is,

δi,j =
1

|Vi|
∑
f∈∂Vi

∑
l

αj,f,l [F
n]f,l Sf , (3.1.17)

where αj,f,l are constant coefficients independent of the solution and shape of the simplex, |Vi| is

the cell volume, Sf is the face area, and l runs through the flux points on the faces. In the case

of quadrilateral or hexahedral elements, the extension is straightforward as all the operations

are carried out in a one-dimensional manner using a tensor product basis. For one-dimensional

conservation laws, equation (3.1.17) reduces to,

δi,j =
1

hi
(αL,j [Fn]L + αR,j [Fn]R) , (3.1.18)

where the element i has two faces (a left and a right one) and has length hi. The elements

sides are unit in area, and have unit face normals of 1 and −1 such that [Fn]L = − [F]L and

[Fn]R = [F]R. The terms αR,j and αL,j are constant lifting coefficients in one-dimension (see

table 3.1) which penalizes the normal flux difference at the faces for every solution point j.

Due to symmetry, αL,j = αR,k+2−j for the one-dimensional case [12], where k is the value of

the solution reconstruction order, or the value of P k. Derivation of the coefficients for linear

elements is covered in Appendix B, specifically for P 2 reconstruction. The chain rule approach

computes Πj

[
~∇ · ~F (Qi)

]
efficiently, i.e.,

www.manaraa.com

13

Table 3.2 Lagrange interpolation coefficients for P 2.

cj,m m = 1 m = 2 m = 3

j = 1 -1.5 2.0 -0.5

j = 2 -0.5 0.0 0.5

j = 3 0.5 -2.0 1.5

~∇ · ~F (Qhi,j) =
∂F (Qi,j)

∂x
+
∂G(Qi,j)

∂y
+
∂H(Qi,j)

∂z

=
∂F (Qi,j)

∂Q

∂Qi,j
∂x

+
∂G(Qi,j)

∂Q

∂Qi,j
∂y

+
∂H(Qi,j)

∂Q

∂Qi,j
∂z

=
∂ ~F (Qi,j)

∂Q
· ~∇Qi,j .

(3.1.19)

The
∂ ~F (Qi,j)
∂Q term can be computed analytically [26],

∂F (Qi,j)

∂x
=


0 1 0 0 0

γ−1
2

(v2 + w2) + γ−3
2
u2 (3− γ)u −(γ − 1)v −(γ − 1)w γ − 1

−uv v u 0 0

−uw w 0 u 0[
− γe
ρ

+ (γ − 1)(u2 + v2 + w2)
]
u γe

ρ
− (γ−1)

2
(3u2 + v2 + w2) −(γ − 1)uv −(γ − 1)uw γu

,

∂G(Qi,j)

∂y
=


0 0 1 0 0

−uv v u 0 0

γ−1
2

(u2 + w2) + γ−3
2
v2 −(γ − 1)u (3− γ)v −(γ − 1)w γ − 1

−vw 0 w v 0[
− γe
ρ

+ (γ − 1)(u2 + v2 + w2)
]
v −(γ − 1)uv γe

ρ
− (γ−1)

2
(u2 + 3v2 + w2) (γ + 1)vw γuv

,

∂H(Qi,j)

∂z
=


0 0 0 1 0

−uw w 0 u 0

−vw 0 w v 0

γ−1
2

(u2 + v2) + γ−3
2
w2 −(γ − 1)u −(γ − 1)v (3− γ)w γ − 1[

− γe
ρ

+ (γ − 1)(u2 + v2 + w2)
]
w −(γ − 1)uw (γ + 1)vw γe

ρ
− (γ−1)

2
(u2 + v2 + 3w2) γw

,

while the solution derivative, ~∇Qi,j , is computed using a Lagrange polynomial interpolation.

The Lagrange polynomial is expressed in the form,

LSPj (X) =

n∏
s=1,s 6=i

(
X −Xs

Xi −Xs

)
, (3.1.20)

www.manaraa.com

14

Figure 3.2 Solution points on a hexahedral face for P 2 and P 3

where Xs is the location of the solution points in the domain, which are Gauss-Lobatto points

defined by,

Xs = −cos
[

(s− 1)π

k

]
. s = 1, 2, ..., k + 1 (3.1.21)

The gradient of Q is then calculated with,

~∇Qi,j =
∑
j

Qi,j ~∇LSPj .

Hence, the solution gradient is formulated from derivatives of the Lagrange polynomials (table

3.2). Applying the projection and correction function formulation into equation (3.1.15), the

CPR formulation for the inviscid flux for simplex elements is,

∂Qhi,j
∂t

+ Πj

(
~∇ · ~F (Q)

)
+

1

|Vi|
∑
f∈∂Vi

∑
l

αj,f,l [F
n
com − Fn(Qi)]f,l Sf = 0. (3.1.22)

For one-dimensional conservation laws, equation (3.1.22) reduces to,

∂Qhi,j
∂t

+ Πj

(
∂F (Qhi)

∂x

)
+

1

hi
(αL,j [Fn]L + αR,j [Fn]R) = 0, (3.1.23)

To extend the one-dimensional CPR method to three-dimensions, let Qi:,j,m,l denote the degrees

of freedom (cell i and solution point indexes j, m, and l) within hexahedral elements, where

each element i has six faces and volume |Vi|. The CPR formulation from equation (3.1.22)

becomes,

www.manaraa.com

15

∂Qhi:j,m,l
∂t

+Πj,m,l

[
~∇ · ~F (Qi)

]
+

1

|Vi|
(αR,j [F

n]R,jS1 + αR,m[Gn]R,mS2 + αR,l[H
n]R,lS3

+αL,j [F
n]L,jS4 + αL,m[Gn]L,mS5 + αL,l[H

n]L,lS6) = 0,

(3.1.24)

where S1 through S6 is the value of each face area. For efficiency, let the flux point (FP)

locations coincide with the solution points. Thus computational cost is reduced since no data

interpolation between solution points and flux points is needed.

Viscous flux

The Navier-Stokes equations take the form,

∂Q

∂t
+ ~∇ · ~F (Q)− ~∇ · ~F v(Q, ~∇Q) = 0, (3.1.25)

where ~F is the inviscid flux vector as described before and ~F v is the viscous flux vector given

by,

~F v(Q, ~∇Q) =
(
F v(Q, ~∇Q), Gv(Q, ~∇Q), Hv(Q, ~∇Q)

)
(3.1.26)

~F v =





0

τxx

τxy

τxz

uτxx + vτxy + wτxz − qx


,



0

τyx

τyy

τyz

uτyx + vτyy + wτyz − qy


,



0

τzx

τzy

τzz

uτzx + vτzy + wτzz − qz




.

(3.1.27)

The stress tensor, τ , is,

τ = µ

[
~∇~u+

(
~∇~u
)T
− 2

3

(
~∇ · ~u

)
I

]
, (3.1.28)

www.manaraa.com

16

where I is the identity matrix, µ is the molecular viscosity coefficient, and ~u contains the

velocity components. The individual components of the viscous stress tensor are,

τxx =
2

3
µ

(
2
∂u

∂x
− ∂v

∂y
− ∂w

∂z

)
,

τyy =
2

3
µ

(
2
∂v

∂y
− ∂u

∂x
− ∂w

∂z

)
,

τzz =
2

3
µ

(
2
∂w

∂z
− ∂u

∂x
− ∂v

∂y

)
,

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
= τyx,

τxz = µ

(
∂w

∂x
+
∂u

∂z

)
= τzx,

τyz = µ

(
∂v

∂z
+
∂w

∂y

)
= τzy.

The heat flux is,

~q = −cp
µ

Pr
~∇T, (3.1.29)

where cp is the specific heat capacity at constant pressure, Pr is the Prandtl number, and T is

the temperature. The components of the heat flux are,

qx = −cp
µ

Pr

∂T

∂x
,

qy = −cp
µ

Pr

∂T

∂y
,

qz = −cp
µ

Pr

∂T

∂z
.

A variable ~R is introduced such that,

~R = ~∇Q. (3.1.30)

Let ~Ri be an approximation of ~R on Vi, and ~Ri ∈
(
P k, P k, P k

)
for three dimensions and

~Ri ∈
(
P k, P k

)
for two-dimensions. The obvious choice of ~Ri = ~∇Qi is not appropriate, and

the computation of ~Ri must involve data from neighboring cells. Discretizing the viscous terms

using CPR for simplex elements yields the equation,

∂Qhi,j
∂t

+ Πj

[
~∇ · ~F (Qhi)

]
−Πv

j

[
~∇ · ~Fv(Qhi , ~Rhi)

]
+

1

|Vi|
∑
f∈∂Vi

∑
l

αj,f,l

(
[F]nf,l − [F v]nf,l

)
Sf ,

(3.1.31)

www.manaraa.com

17

Table 3.3 Viscous DG correction coefficient.

P k k = 1 k = 2 k = 3 k = 4 k = 5

β 2.0 6.0 10.0 18.0 21.0

where [F]n ≡ Fncom − Fn(Qhi , ~n) and,

[F v]n ≡ ~F v(Qcomf,l ,
~∇Qcomf,l) · ~nf,l − ~F v(Qhi ,

~Rhi)
∣∣∣
f,l
· ~nf,l.

The calculation of ~Rhi,j is completed as follows,

~Rhi,j =
(
~∇Qhi

)
+

1

|Vi|
∑
f∈∂Vi

∑
l

αj,f,l

[
Qhcom −Qhi

]
f,l
~nfSf , (3.1.32)

Extension to hexahedral elements is straight forward, like that of equation (3.1.24). All the

corrections are completed in a one-dimensional manner across the 6 faces of the element. For the

current study, the Bassi-Rebay 2 scheme (BR2) [3] is implemented to discretize the viscous flux.

The value of Qhcom is simply the average of the solution on both sides of face f . The computation

of the viscous flux vector, Πv
j

[
~∇ · ~Fv(Qhi , ~Rhi)

]
, follows the same Lagrange polynomial approach

as described in the inviscid flux formulation. First, the viscous flux is evaluated at the solution

points,

~F vi,j = ~F v
(
Qi,j , ~Ri,j

)
.

Then, Lagrange interpolation formulates a viscous flux polynomial, and the divergence of the

polynomial is used as the projection,

Πv
j

[
~∇ · ~F v(Qhi , ~Rhi)

]
≈
∑
j

~F vi,j · ~∇LSPj (3.1.33)

In the correction term, the common viscous flux term, Fnv,com(Qhcom, ~∇Qhcom, ~n), is required. For

the BR2 scheme, the common solution is simply the average of the solutions at both sides of

the flux points,

Qhcom

∣∣∣
f,l

=
Qi|f,l + Qi+|f,l

2
,

while common gradient on face f and flux point l is evaluated as,

~∇Qhcom
∣∣∣
f,l

=
1

2

(
~∇Q−f,l + ~r−f,l + ~∇Q+

f,l + ~r+f,l

)
, (3.1.34)

www.manaraa.com

18

Figure 3.3 Transformation from physical to standard element

where ~∇Q−f,l and ~∇Q+
f,l are the gradients of the solution from both the left and right cells,

and the ~r−f,l and ~r+f,l terms are the local lifting corrections to the gradients due to the common

solution on face f . They are calculated using,

r±f,l =
1

|V ±i |
∑
m

β
[
Qhcom −Qhi

]
f,m

(∓~nf)Sf , (3.1.35)

where m is the index of the flux point on faces f , ~nf is the unit normal vector directing from

left to right, and β is the viscous discontinuous Galerkin (DG) correction coefficient (see table

3.3). Note that in equation (3.1.35) there is no summation over the faces so that the BR2

scheme maintains a compact face neighbor stencil.

3.1.2 High-order elements

The computational domain is filled with non-overlapping hexahedral elements. The ele-

ments are transformed from the standard coordinate systems, (x, y, z), to a standard cubic

element, (ξ, η, ζ) ∈ [0, 1] x [0, 1] x [0, 1], as shown in figure 3.3. The transformation takes the

form,


x

y

z

 =
K∑
i=1

Mi(ξ, η, ζ)


xi

yi

zi

 , (3.1.36)

www.manaraa.com

19

where K is the number of points used to define the physical element, (xi, yi, zi) are the Cartesian

coordinates of those points, andMi(ξ, η, ζ) are the shape functions determined by node locations

[34]. The Jacobian matrix, J , is,

J =
∂(x, y, z)

∂(ξ, η, ζ)
=


xξ xη xζ

yξ yη yζ

zξ zη zζ

 . (3.1.37)

When the transformation is non-singular, the inverse transformation must exist. The Jacobian

matrices are related to one-another according to,

∂(ξ, η, ζ)

∂(x, y, z)
=


ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

 = J−1. (3.1.38)

Hence, the metrics can be computed as follows:

ξx =
yηzζ − yζzη
|J |

, ξy =
xζzη − xηzζ
|J |

, ξz =
xηyζ − xζyη
|J |

,

ηx =
yζzξ − yξzζ
|J |

, ηy =
xξzζ − xζzξ
|J |

, ηz =
xζyξ − xξyζ
|J |

,

ζx =
yξzη − yηzξ
|J |

, ζy =
xηzξ − xξzη
|J |

, ζz =
xξyη − xηyξ
|J |

.

(3.1.39)

The governing equation for the inviscid flux is transformed from the physical domain to the

computational domain and becomes,

∂Q̃

∂t
+
∂F̃

∂ξ
+
∂G̃

∂η
+
∂H̃

∂ζ
= 0. (3.1.40)

Likewise, the viscous flux equation is,

∂Q̃

∂t
+
∂
(
F̃ − F̃v

)
∂ξ

+
∂
(
G̃− G̃v

)
∂η

+
∂
(
H̃ − H̃v

)
∂ζ

= 0. (3.1.41)

The transformed flux variables are,

www.manaraa.com

20


F̃

G̃

H̃

 = |J |


ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

 ·

F

G

H

 , (3.1.42)


F̃v

G̃v

H̃v

 = |J |


ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

 ·

Fv

Gv

Hv

 . (3.1.43)

The following subsections will detail the extension of high-order elements to the inviscid and

viscous flux for the CPR method.

Inviscid flux

Let ~Sξ = |J |(ξx, ξy, ξz), ~Sη = |J |(ηx, ηy, ηz), and ~Sζ = |J |(ζx, ζy, ζz). We obtain F̃ = ~F · ~Sξ,

G̃ = ~F · ~Sη, and H̃ = ~F · ~Sζ . Then equation (3.1.40) becomes,

∂Q̃

∂t
+ ~∇ξ · ~̃F = 0, (3.1.44)

where ~̃F =
(
F̃ , G̃, H̃

)
and ~∇ξ is the divergence operator in the computational domain. Fol-

lowing from the CPR formulation for a simplex element,

∂Q̃hi,j
∂t

+ Πj

[
~∇ξ · ~̃F (Q̃i)

]
+

1

|V ξ
i |

∑
f∈∂Vi

∑
l

αj,f,l

[
F̃n
]
f,l
Sξf ,= 0, (3.1.45)

where the ξ subscript indicates the variables which are evaluated in the computational domain.

The transformed normal flux is further expressed in terms of the flux in physical space as,

[
F̃
]n
f,l
Sξf =

([
F̃
]n
f,l
· ~nξf

)
Sξf

=

([
F̃
]n
f,l
· ~Sξ

∣∣∣
f,l
nξ|f,l

)
Sξf +

([
F̃
]n
f,l
· ~Sη

∣∣∣
f,l
nη|f,l

)
Sξf +

([
F̃
]n
f,l
· ~Sζ

∣∣∣
f,l
nζ |f,l

)
Sξf

=
[
F̃
]n
f,l
· ~Sn

∣∣∣
f,l

=
[
F̃
]n
f,l
|~Sn|

∣∣∣
f,l

,

(3.1.46)

www.manaraa.com

21

where ~nξf = (nξ, nη, nζ) is a unit normal vector on a straight face of the standard element

and ~Sn = ~Sξn
ξ + ~Sηn

η + ~Sζn
ζ is a normal vector on a face in the physical space. For a

hexahedral element with indexes (j,m, l) to denote the solution points, the CPR formulation

for the inviscid flux becomes,

∂Q̃hi:j,m,l
∂t

+Πj,m,l

[
~∇ξ · ~̃F (Q̃i)

]
+

1

|Vi|
(αR,j [F̃com(1, ηj,m,l, ζj,m,l)− F̃i(1, ηj,m,l, ζj,m,l)]nj S1,j

+αL,j [F̃com(−1, ηj,m,l, ζj,m,l)− F̃i(−1, ηj,m,l, ζj,m,l)]
n
j S2,j

+αR,m[G̃com(ξj,m,l, 1, ζj,m,l)− G̃i(ξj,m,l, 1, ζj,m,l)]nmS3,m

+αL,m[G̃com(ξj,m,l,−1, ζj,m,l)− G̃i(ξj,m,l,−1, ζj,m,l)]
n
mS4,m

+αR,l[H̃com(ξj,m,l, ηj,m,l, 1)− H̃i(ξj,m,l, ηj,m,l, 1)]nl S5,l

+αL,l[H̃com(ξj,m,l, ηj,m,l,−1)− H̃i(ξj,m,l, ηj,m,l,−1)]nl S6,l) = 0.

(3.1.47)

Note that the correction is completed in a one-dimensional manner which makes the method

more efficient per degree of freedom when compared to tetrahedral or prism cells.

Viscous flux

Let ~Sξ = |J |(ξx, ξy, ξz), ~Sη = |J |(ηx, ηy, ηz), and ~Sζ = |J |(ζx, ζy, ζz). We obtain F̃ = ~F · ~Sξ,

G̃ = ~F · ~Sη, and H̃ = ~F · ~Sζ . Then equation (3.1.41) becomes,

∂Q̃

∂t
+ ~∇ξ · ~̃F − ~∇ξ · ~̃F v = 0, (3.1.48)

where ~̃F =
(
F̃ , G̃, H̃

)
, ~̃F v =

(
F̃ v, G̃v, H̃v

)
, and ~∇ξ is the divergence operator in the compu-

tational domain. Following from the CPR formulation for a simplex element, we obtain,

∂Q̃hi,j
∂t

+Πj

[
~∇ξ · ~̃Fc(Qhi)

]
−Πv

j

[
~∇ξ · ~̃Fv(Q̃hi ,

~̃Rhi)
]

+
1

|V ξ
i |

∑
f∈∂V ξi

∑
l

αj,f,l

([
F̃ncom − F̃c

]
f,l
−
[
F̃ v,ncom − F̃ v,n

(
Q̃i,

~̃Ri

)]
f,l

)
Sξf ,

(3.1.49)

~̃Rhi,j =
(
~∇ξQ̃hi

)
+

1

|V ξ
i |

∑
f∈∂V ξi

∑
l

αj,f,l

[
Q̃hcom − Q̃hi

]
f,l
~nξfS

ξ
f . (3.1.50)

Again, extending the above to hexahedral elements is straight forward, and the same approach

for the inviscid flux can be used.

www.manaraa.com

22

Figure 3.4 Shared face and points between two cells

3.2 Riemann solver

This section covers the calculation of the common flux, Fncom(Qi, Qi+, ~n). The left and right

states at cell interfaces are not equal to each other, i.e,

QLf,j =



ρL

ρLuL

ρLvL

ρLwL

eL


6=



ρR

ρRuR

ρRvR

ρRwR

eR


= QRf,j . (3.2.1)

Hence, a common flux is found by solving a Riemann problem to calculate the continuous

solution over the interfaces. The two solvers implemented are the Rusanov flux and the Roe

flux. Both are described in this section.

3.2.1 Rusanov flux

The Rusanov flux [21] requires an average speed of sound to be calculated first,

ā =

√
γp̄

ρ̄
, (3.2.2)

where p̄ = pL+pR
2 and ρ̄ = ρL+ρR

2 . Next, the average speed of the flow in the normal direction

is needed,

www.manaraa.com

23

ūn =
|uL,n + uR,n|

2
, (3.2.3)

where un = ~u · ~n. Then, the following equation calculates the Rusanov flux,

Fncom =
1

2

(
~F (QR) · ~n+ ~F (QL) · ~n

)
− 1

2
(ūn + ā)

(
QR −QL

)
. (3.2.4)

3.2.2 Roe flux

The Roe flux [20] attempts to solve the Riemann problem with linearization. Consider the

equation,

∂Q

∂t
+
∂F

∂x
= 0. (3.2.5)

Roe uses a linear approximation to the Riemann problem to yield,

∂Q

∂x
+ [Ā]n

∂Q

∂x
= 0, (3.2.6)

where [Ā]n = [Ān(QL, QR)] is Roe’s averaged matrix and is evaluated using averaged values of

Q at an interface separating the states. The Jacobian is now defined as,

[A] =
∂F

∂Q
, (3.2.7)

which is replaced by [Ā], or Roe’s averaged matrix, in this formulation. Certain conditions

must be satisfied for the solution of the linear problem to become an approximate solution to

the nonlinear Riemann problem presented. These conditions are [26]:

• Q is related to F by a linear mapping.

• As the left state approaches the right state (QL ⇒ QR), [Ā(QL, QR)] ⇒ [A]n. Where

[A]n is the Jacobian of the original system.

• For any two values of QL and QR, FnR − FnL = [Ā]n(QR −QL).

• [Ā] must have real and linearly independent eigenvalues.

www.manaraa.com

24

The averaged values [20], which fill the Jacobian matrix [Ā]n, are given as the following,

ρ̄ =
ρR + ρL√
ρ
R

+
√
ρ
L

, ū =

√
ρ
R
uR +

√
ρ
L
uL√

ρ
R

+
√
ρ
L

v̄ =

√
ρ
R
vR +

√
ρ
L
vL√

ρ
R

+
√
ρ
L

, w̄ =

√
ρ
R
wR +

√
ρ
L
wL√

ρ
R

+
√
ρ
L

h̄ =

√
ρ
R
hR +

√
ρ
L
hL√

ρ
R

+
√
ρ
L

, ā2 = (γ − 1)

(
h̄− 1

2
(ū2 + v̄2 + w̄2)

)
.

where a = γP
ρ is the speed of sounds and h = e+P

ρ is the total enthalpy. The Jacobian matrices

(let A = ∂F
∂Q , B = ∂G

∂Q , and C = ∂H
∂Q such that An = Anx +Bny + Cnz) become,

A =



0 1 0 0 0

(γ − 1)h− u2 − a2 (3− γ)u −(γ − 1)v −(γ − 1)w γ − 1

−uv v u 0 0

−uw w 0 u 0

u
[
(γ − 2)h− a2

]
h− (γ − 1)u2 −(γ − 1)uv −(γ − 1)uw γu


,

B =



0 0 1 0 0

−uv v u 0 0

(γ − 1)h− v2 − a2 −(γ − 1)u (3− γ)v −(γ − 1)w γ − 1

−vw 0 w v 0

v
[
(γ − 2)h− a2

]
−(γ − 1)uv h− (γ − 1)v2 (γ + 1)vw γuv


,

C =



0 0 0 1 0

−uw w 0 u 0

−vw 0 w v 0

(γ − 1)h− w2 − a2 −(γ − 1)u −(γ − 1)v (3− γ)w γ − 1

w
[
(γ − 2)h− a2

]
−(γ − 1)uw (γ + 1)vw h− (γ − 1)w2 γw


.

Then, the numerical flux given at a particular face becomes,

Fncom =
1

2
(Fn(QR) + Fn(QL))− [Ā]n(QR −QL). (3.2.8)

To solve [Ā]n(QR −QL) the eigenvectors of [Ā]n are required,

λ̄1 = ūn − ā, λ̄2 = λ̄3 = λ̄4 = ūn, λ̄4 = ūn + ā,

www.manaraa.com

25

where ūn = ūnx + v̄ny + w̄nz. Next, let r̄ be the eigenvectors of the system, in order to

completely determine the Roe numerical flux, wave strengths ω̄i are required. These can be

solved using,

QR −QL =

5∑
i=1

ω̄ir̄i, (3.2.9)

hence the wave strengths can be found, and the Roe flux can be formed,

Fncom =
1

2
(Fn(QR) + Fn(QL))− 1

2

5∑
i=1

|λ̄i|ω̄ir̄i (3.2.10)

3.3 Time-stepping

This last section explains the time discretization implemented. The hyperbolic conservation

law for the inviscid flux is,

∂Q

∂t
= −~∇ · ~F (Q), (3.3.1)

and similarly, the viscous flux is,

∂Q

∂t
= −~∇ · ~F (Q) + ~∇ · ~F v(Q, ~∇Q). (3.3.2)

The right hand side of both equations can be viewed as the residual and is required for time-

stepping. For explicit time integration, a three-stage Runge-Kutta scheme [23] is used. In order

to march the solution forward in time (t+ 1), the following is done,

Q
(1)
i =Qti + ∆t ∗ Resi(Q

t),

Q
(2)
i =

3

4
Qti +

1

4
Q

(1)
i +

1

4
∆t ∗ Resi(Q

(1)),

Q
(t+1)
i =

1

3
Qti +

2

3
Q

(2)
i +

2

3
∆t ∗ Resi(Q

(2)),

(3.3.3)

where ∆t is the chosen time-step and Resi(Q) is the right hand side of equation (3.3.1) or

(3.3.2).

www.manaraa.com

26

CHAPTER 4. CUDA IMPLEMENTATION

This chapter explains the implementation of the CPR method on hexahedral cells for both

the viscous and inviscid flux with GPU computing. The organization of the chapter is as

follows: Section 4.1 discusses the data initialization for the GPU device while Section 4.2

shows the implementation of the inviscid flux, viscous flux, and additional kernels for explicit

time-stepping. It should be noted that the data initialization is completed on the CPU side,

and then transfered to the GPU once the data is structured properly.

4.1 Data initialization

This section describes the initialization of the GPU data, which is completed in C++ on

the CPU side and transfered for calculations in CUDA C++. First, the solution array, Qg, the

old solution array, Qog, and the residual, Resg, are all stored within the GPU’s global memory.

They are stored in the following manner:

Qg[i+ j ∗ nsp + k ∗ nsp ∗ nv] = Qi,j,k,

Where nsp is the number of solution points in a cell, which depends on the order of accuracy,

and nv is the number of state vectors (which is five for three-dimensional problems). The three

indexes i, j, and k, represent the solution points, state vectors, and cells respectfully. The index

i will run from 0 to (nsp − 1), j will run from 0 to (nv − 1), and k will run from 0 to (nc − 1)

where nc is the total number of cells in the domain (CUDA arrays will start at index 0). The

arrays are copied to the GPU device in a one-dimensional format to improve memory access

speed. Next, the metric terms for transformations are copied into the global GPU memory,

Tg[i+ j ∗ nsp + k ∗ nsp ∗ 11] = Ti,j,k,

www.manaraa.com

27

where j runs through each metric term (0 to 10) for every solution point (i) and every cell (k)

in the domain. The data is structured as such:

j = 0→ Tg[i+ 0 ∗ nsp + k ∗ nsp ∗ 11] =
∂ξ

∂x

∣∣∣∣
i,k

,

j = 1→ Tg[i+ 1 ∗ nsp + k ∗ nsp ∗ 11] =
∂ξ

∂y

∣∣∣∣
i,k

,

j = 2→ Tg[i+ 2 ∗ nsp + k ∗ nsp ∗ 11] =
∂ξ

∂z

∣∣∣∣
i,k

,

j = 3→ Tg[i+ 3 ∗ nsp + k ∗ nsp ∗ 11] =
∂η

∂x

∣∣∣∣
i,k

,

j = 4→ Tg[i+ 4 ∗ nsp + k ∗ nsp ∗ 11] =
∂η

∂y

∣∣∣∣
i,k

,

j = 5→ Tg[i+ 5 ∗ nsp + k ∗ nsp ∗ 11] =
∂η

∂z

∣∣∣∣
i,k

,

j = 6→ Tg[i+ 6 ∗ nsp + k ∗ nsp ∗ 11] =
∂ζ

∂x

∣∣∣∣
i,k

,

j = 7→ Tg[i+ 7 ∗ nsp + k ∗ nsp ∗ 11] =
∂ζ

∂y

∣∣∣∣
i,k

,

j = 8→ Tg[i+ 8 ∗ nsp + k ∗ nsp ∗ 11] =
∂ζ

∂z

∣∣∣∣
i,k

,

j = 9→ Tg[i+ 9 ∗ nsp + k ∗ nsp ∗ 11] = J |i,k ,

j = 10→ Tg[i+ 10 ∗ nsp + k ∗ nsp ∗ 11] =
1

J

∣∣∣∣
i,k

.

The final two terms in the transformation data include the Jacobian and its inverse (the inverse

is stored to reduce division cost). Next, the boundary conditions are stored as,

BCg[i+ fbf ∗ 8] = BCi,fbf ,

where fbf runs through all faces at the boundaries and i runs from 0 to 7. The following

information is stored,

www.manaraa.com

28

i = 0→ BCg[0 + fbf ∗ 8] = Boundary condition type,

i = 1→ BCg[1 + fbf ∗ 8] = Location of cell with boundary condition,

i = 2→ BCg[2 + fbf ∗ 8] = Location of face in cell with boundary condition,

i = 3→ BCg[3 + fbf ∗ 8] = ρfixbf ,

i = 4→ BCg[4 + fbf ∗ 8] = ρfixbf ∗ u
fix
bf ,

i = 5→ BCg[5 + fbf ∗ 8] = ρfixbf ∗ v
fix
bf ,

i = 6→ BCg[6 + fbf ∗ 8] = ρfixbf ∗ w
fix
bf ,

i = 7→ BCg[7 + fbf ∗ 8] = efixbf ,

where the values ρfixbf , ufixbf , vfixbf , wfixbf , and efixbf are fixed values at boundary faces in the domain

for a specific boundary condition (they are not necessarily used). Next we require allocation of

solution information at the boundary faces,

Qbfg [i+ j ∗ nfp + k ∗ nfp ∗ nv] = Qbfi,j,k,

where i runs through the flux points (nfp), j runs through the state variables, and k runs over

the boundary faces. The vector stores the following values,

j = 0→ Qbfg [i+ 0 ∗ nfp + k ∗ nfp ∗ nv] = ρbf ,

j = 1→ Qbfg [i+ 1 ∗ nfp + k ∗ nfp ∗ nv] = ρbf ∗ ubf ,

j = 2→ Qbfg [i+ 2 ∗ nfp + k ∗ nfp ∗ nv] = ρbf ∗ vbf ,

j = 3→ Qbfg [i+ 3 ∗ nfp + k ∗ nfp ∗ nv] = ρbf ∗ wbf ,

j = 4→ Qbfg [i+ 4 ∗ nfp + k ∗ nfp ∗ nv] = ebf .

The array stores the state vectors at the solution points on the boundary faces, whose values

depend on the boundary condition type. Next, we require information on the flux points for

face areas and normals,

Hg[i+ j ∗ nfp +m ∗ nfp ∗ nf + k ∗ nfp ∗ nf ∗ 6] = Hi,j,m,k,

where i, j, and k, run through the flux points, faces, and cells respectfully, m runs from 0 to 5,

and nf is the total number of faces per cell (which is six for hexahedral cells). The information

www.manaraa.com

29

stored in the array is,

m = 0→ Hg[id+ 0 ∗ nfp ∗ nf] = Current cell and SP number corresponding to FP,

m = 1→ Hg[id+ 1 ∗ nfp ∗ nf] = Neighbor cell and SP number corresponding to FP,

= or face and FP number at boundary,

m = 2→ Hg[id+ 2 ∗ nfp ∗ nf] = nxi,j,k,

m = 3→ Hg[id+ 3 ∗ nfp ∗ nf] = nyi,j,k,

m = 4→ Hg[id+ 4 ∗ nfp ∗ nf] = nzi,j,k,

m = 5→ Hg[id+ 5 ∗ nfp ∗ nf] = |~Sn|i,j,k,

where id = i + j ∗ nfp + k ∗ nfp ∗ nf ∗ 6, while SP and FP correspond to solution point and

flux point respectfully. In addition, another array is needed for information at the flux points

to decide whether or not the point corresponds to a wall type of boundary condition,

Vg[i+ j ∗ nfp + k ∗ nfp ∗ nf] = Vi,j,k.

The data stored in this array is,

Vg[i+ j ∗ nfp + k ∗ nfp ∗ nf] = 0, If not a wall boundary,

= 1, If wall boundary,

where the indexes are the same as the previous array. The next set of information needed

involves updating the residual. Two separate arrays are required,

Ridxg [m+ i ∗ 2 + k ∗ 2 ∗ nsp] = Ridxm,i,k,

where i and k loop through solution points and cells, while m is either 0 or 1. The array

contains the data for accessing the proper memory when updating the residual, specifically,

m = 0→ Ridxg [0 + i ∗ 2 + k ∗ 2 ∗ nsp] = The number of updates at current solution point,

m = 1→ Ridxg [1 + i ∗ 2 + k ∗ 2 ∗ nsp] = Number to jump in the memory access.

In addition, another array is needed for accessing the correct solution point, flux point, and

face.

Rlocg [m+ i ∗ 3 + j ∗ 3 ∗ nfp + l ∗ 3 ∗ nnp ∗ nf + k ∗ 3 ∗ nnp ∗ nf ∗ n1d
sp] = Rlocm,i,j,l,k.

www.manaraa.com

30

Here, m varies from 0 to 2, while i, j, l, and k, loop through flux points, faces per cell, solution

points in one-dimension, and cells respectfully. The term n1d
sp refers to the solution points in

one-dimension which is equal to the order of accuracy (i.e for P 2 the value is n1d
sp = 3). The

contents of the array are the index location of the following,

m = 0→ Rlocg [0 + i ∗ 3 + j ∗ 3 ∗ nfp + l ∗ 3 ∗ nnp ∗ nf + k ∗ 3 ∗ nnp ∗ nf ∗ n1d
sp] = Correction,

m = 1→ Rlocg [1 + i ∗ 3 + j ∗ 3 ∗ nfp + l ∗ 3 ∗ nnp ∗ nf + k ∗ 3 ∗ nnp ∗ nf ∗ n1d
sp] = Flux point,

m = 2→ Rlocg [2 + i ∗ 3 + j ∗ 3 ∗ nfp + l ∗ 3 ∗ nnp ∗ nf + k ∗ 3 ∗ nnp ∗ nf ∗ n1d
sp] = Face.

The contents and use of these two arrays will be further explained in the next section, when the

residual update is discussed. Another two additional arrays are needed for the computation of

the viscous flux. The first array stores the solution gradient,

Qxyzg [i+m ∗ nsp + k ∗ nsp ∗ nv ∗ 3] = Qxyzi,m,k,

www.manaraa.com

31

where m varies from 0 to 14 while i and k run through the solution points and cells accordingly.

The contents of the array are as follows,

m = 0→ Qxyzg [i+ 0 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂ρ

∂x

∣∣∣∣
i,k

,

m = 1→ Qxyzg [i+ 1 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂ρu

∂x

∣∣∣∣
i,k

,

m = 2→ Qxyzg [i+ 2 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂ρv

∂x

∣∣∣∣
i,k

,

m = 3→ Qxyzg [i+ 3 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂ρw

∂x

∣∣∣∣
i,k

,

m = 4→ Qxyzg [i+ 4 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂e

∂x

∣∣∣∣
i,k

,

m = 5→ Qxyzg [i+ 5 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂ρ

∂y

∣∣∣∣
i,k

,

m = 6→ Qxyzg [i+ 6 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂ρu

∂y

∣∣∣∣
i,k

,

m = 7→ Qxyzg [i+ 7 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂ρv

∂y

∣∣∣∣
i,k

,

m = 8→ Qxyzg [i+ 8 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂ρw

∂y

∣∣∣∣
i,k

,

m = 9→ Qxyzg [i+ 9 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂e

∂y

∣∣∣∣
i,k

,

m = 10→ Qxyzg [i+ 10 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂ρ

∂z

∣∣∣∣
i,k

,

m = 11→ Qxyzg [i+ 11 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂ρu

∂z

∣∣∣∣
i,k

,

m = 12→ Qxyzg [i+ 12 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂ρv

∂z

∣∣∣∣
i,k

,

m = 13→ Qxyzg [i+ 13 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂ρw

∂z

∣∣∣∣
i,k

,

m = 14→ Qxyzg [i+ 14 ∗ nsp + k ∗ nsp ∗ nv ∗ 3] =
∂e

∂z

∣∣∣∣
i,k

.

The second array stores the viscous flux at the solution points,

Fvspg [i+m ∗ nsp + k ∗ nsp ∗ 12] = Fvspi,m,k,

www.manaraa.com

32

where m varies from 0 to 11 while i and k run through the solution points and cells like before.

The contents of the array are as follows,

m = 0→ Fvspg [i+ 0 ∗ nsp + k ∗ nsp ∗ 12] = τxx,

m = 1→ Fvspg [i+ 1 ∗ nsp + k ∗ nsp ∗ 12] = τyx,

m = 2→ Fvspg [i+ 2 ∗ nsp + k ∗ nsp ∗ 12] = τzx,

m = 3→ Fvspg [i+ 3 ∗ nsp + k ∗ nsp ∗ 12] = u ∗ τxx + v ∗ τxy + w ∗ τxz − qx,

m = 4→ Fvspg [i+ 4 ∗ nsp + k ∗ nsp ∗ 12] = τxy,

m = 5→ Fvspg [i+ 5 ∗ nsp + k ∗ nsp ∗ 12] = τyy,

m = 6→ Fvspg [i+ 6 ∗ nsp + k ∗ nsp ∗ 12] = τzy,

m = 7→ Fvspg [i+ 7 ∗ nsp + k ∗ nsp ∗ 12] = u ∗ τyx + v ∗ τyy + w ∗ τyz − qy,

m = 8→ Fvspg [i+ 8 ∗ nsp + k ∗ nsp ∗ 12] = τxz,

m = 9→ Fvspg [i+ 9 ∗ nsp + k ∗ nsp ∗ 12] = τyz,

m = 10→ Fvspg [i+ 10 ∗ nsp + k ∗ nsp ∗ 12] = τzz,

m = 11→ Fvspg [i+ 11 ∗ nsp + k ∗ nsp ∗ 12] = u ∗ τzx + v ∗ τzy + w ∗ τzz − qz.

To compute the derivatives ~∇Qξ, the values of the coefficients are stored in the array,

cg[i+ j ∗ n1d
sp] = ci,j ,

where i and j both vary from 0 to (n1d
sp − 1) (see table 3.2). Next, to compute the correction

term, δ, coefficients (table 3.1) are stored in the following array,

αg[i] = αi,

where i varies from 0 to (n1d
sp−1). The final coefficient to be loaded is the viscous DG correction

term as shown in table 3.3,

βg = β.

Additional arrays are needed for specific simulation commands. For averaging the solution, we

require two more arrays, one for the averaged primitive variables, and one for averaging the

fluctuations, such as u′u′ and v′v′,

Qavgg [i+ j ∗ nsp + k ∗ nsp ∗ 5] = Qavgi,j,k,

www.manaraa.com

33

Qmavg
g [i+ j ∗ nsp + k ∗ nsp ∗ 6] = Qmavg

i,j,k.

In both arrays, i and k vary through solution points and cells, but j runs from 0 to 4 in the

first array, and from 0 to 5 in the second. The contents of the arrays are as follows,

j = 0→ Qavgg [i+ 0 ∗ nsp + k ∗ nsp ∗ 5] = ρ,

j = 1→ Qavgg [i+ 1 ∗ nsp + k ∗ nsp ∗ 5] = u,

j = 2→ Qavgg [i+ 2 ∗ nsp + k ∗ nsp ∗ 5] = v,

j = 3→ Qavgg [i+ 3 ∗ nsp + k ∗ nsp ∗ 5] = w,

j = 4→ Qavgg [i+ 4 ∗ nsp + k ∗ nsp ∗ 5] = p,

j = 0→ Qmavg
g [i+ 0 ∗ nsp + k ∗ nsp ∗ 6] = u′u′,

j = 1→ Qmavg
g [i+ 1 ∗ nsp + k ∗ nsp ∗ 6] = v′v′,

j = 2→ Qmavg
g [i+ 2 ∗ nsp + k ∗ nsp ∗ 6] = w′w′,

j = 3→ Qmavg
g [i+ 3 ∗ nsp + k ∗ nsp ∗ 6] = u′v′,

j = 4→ Qmavg
g [i+ 4 ∗ nsp + k ∗ nsp ∗ 6] = v′w′,

j = 5→ Qmavg
g [i+ 5 ∗ nsp + k ∗ nsp ∗ 6] = w′u′.

The final addition to the data initialization is the insertion of a probe in the domain to measure

the pressure. The probes position is defined in the CPU code, and is sent to the GPU with the

array,

Pg[i+ j ∗ 2] = Pi,j ,

where i is 0 or 1 and j runs from 0 to the number of probes desired (np). The contents of the

array are,

i = 0→ Pg[0 + j ∗ 2] = Cell location of probe,

i = 1→ Pg[1 + j ∗ 2] = SP location of probe.

The locations are sent to the device, and are easily read from GPU memory for finding the

pressure. After initializing the above arrays, each array is bound in textured memory on the

www.manaraa.com

34

GPU, and one can calculate the memory usage in global memory,

Qg → Qt →[nsp ∗ nv ∗ nc] ∗ 8 Byte,

Qog → Qot →[nsp ∗ nv ∗ nc] ∗ 8 Byte,

Resg → Rest →[nsp ∗ nv ∗ nc] ∗ 8 Byte,

Mg →Mt →[nsp ∗ 11 ∗ nc] ∗ 8 Byte,

BCg → BCt →[nbf ∗ 8] ∗ 8 Byte,

Qbfg → Qbft →[nbf ∗ nv ∗ nfp] ∗ 8 Byte,

Hg → Ht →[nfp ∗ nf ∗ nc ∗ 6] ∗ 8 Byte,

Vg → Vt →[nfp ∗ nf ∗ nc] ∗ 1 Byte,

Ridxg → Ridxt →[nsp ∗ 2 ∗ nc] ∗ 1 Byte,

Rlocg → Rloct →[nfp ∗ n1d
sp ∗ 3 ∗ 6 ∗ nc] ∗ 1 Byte,

cg → ct →[n1d
sp] ∗ 8 Byte,

αg → αt →[nfp] ∗ 8 Byte,

βg → βt →[1] ∗ 8 Byte,

Qxyzg → Qxyzt →[nsp ∗ nv ∗ nc ∗ 3] ∗ 8 Byte (Viscous only),

Fvspg → Fvspt →[nsp ∗ 12 ∗ nc] ∗ 8 Byte (Viscous only),

Qavgg → Qavgt →[nsp ∗ nv ∗ nc] ∗ 8 Byte (Average only),

Qmavg
g → Qmavg

t →[nsp ∗ 6 ∗ nc] ∗ 8 Byte (Average only),

Pg → Pt →[np ∗ 2] ∗ 1 (Pressure probe only).

The arrays which are multiplied by 8 bytes are double precision valued, while those multiplied

by 1 byte are integer valued.

4.2 CUDA implementation

All GPU code illustrated is written in CUDA C++. Exact code commands for CUDA are

not included in the algorithms displayed, but the basic idea is presented. To calculate the

solution for every time step, four GPU kernels are required for the inviscid flux while seven

www.manaraa.com

35

kernels are needed for the viscous flux. The first algorithm illustrates the host CPU code for

third-order Runge-Kutta time-stepping scheme, where tstart and tend represent the starting and

ending time. Each GPU kernel will be discussed in detail, giving complete dimensions for the

grid and blocks used, and displaying an accurate code description.

Algorithm GPU kernel Launch Order

for i = tstart to tend do

Launch kernel → GPU BC

Launch kernel → GPU COPY

UpdateResiduals(1.0,1.0)

Launch kernel → GPU BC

UpdateResiduals(0.75,0.25)

Launch kernel → GPU BC

UpdateResiduals(1.0/3.0,2.0/3.0)

end for

4.2.1 General CUDA kernels

Three CUDA kernels used by both the inviscid and viscous algorithms are discussed here.

The kernel GPU COPY copies the values from the Qg array to the Qog array, the kernel

GPU BC calculates the values at the boundary faces, and the GPU RK kernel updates the

solution in time.

GPU COPY

This kernel simply copies values from one array to another, both of which are the same

size. The threads are set-up as ~t = [tx, ty, tz] =
[
nsp, nv,

128
nsp

]
(the number 128 was chosen

because testing showed this value to give the best performance), and the block grid is defined

as b =
[((

nc
tz

)
∗
(

1
14

)
+ 1
)
∗ 14

]
(14 is selected because the code primarily was run on a Tesla

C2070 which has 14 streaming multiprocessors, but the number can be changed for any GPU,

and the addition of 1 was selected because the divisions are integer division, rounded down).

The thread grid is divided up such that tx will calculate on the solution points, ty will calculate

on the state variables, and tz determines how many cells are calculated per block. For example,

consider a mesh with 31, 255 cells and it is desired to have a P 2 reconstruction. The kernel

www.manaraa.com

36

thread grid would yeild ~t = [27, 5, 4] and the number of blocks would be b = [7826]. If the

addition of 1 was not present in the block calculation, then the number of blocks would be

b = [7812]. Since tz is the number of cells calculated per block, the total number of cells in

the calculation with the addition of the 1 is tz ∗ b = 4 ∗ 7826 = 31304, which is greater than

the number of cells in our domain. However, if the addition of 1 is not present, then the total

number of cells in the calculation is tz ∗ b = 4 ∗ 7812 = 31248, which is less then the number

of cells in the domain, and the GPU grid is not large enough. For larger orders of P k, tz

will be reduced to calculating 1 cell per block, due to the increase in memory required per

cell. However, this presents a problem when the number of cells is greater than the maximum

grid size of the GPU (65,535 blocks for a Tesla C2070). In such a case, the number of cells

calculated per block is increased until the GPU grid encompasses the domain, further increasing

the amount of shared memory required per block.

Algorithm GPU COPY

i = threadIdx.x

j = threadIdx.y

tmp = threadIdx.z

k = blockIdx.x ∗ blockDim.z + tmp

if k < nc then

Qog[i+ j ∗ nsp + k ∗ nsp ∗ nv] = Qt[i+ j ∗ nsp + k ∗ nsp ∗ nv]

end if

In this kernel, the index i runs over all the solution points of one cell, while j runs through

all the state vectors on these solution points, and tmp counts the number of cells calculated

on one GPU multiprocessor. In the prior discussed example, each multiprocessor will run on 4

cells in parallel. Index k calculates the current cell in the domain, and is used in every kernel

for this purpose. The kernel will continue to run and copy data from cell k while k < nc.

GPU BC

This kernel calculates the value of the solution at the boundary faces in the domain. The

threads are set-up as ~t =
[
nfp,

128
nfp

]
and the block grid is defined to be b =

[((nbf
ty

)
∗
(

1
14

)
+ 1
)
∗ 14

]
.

As an example, consider a domain with 850 boundary faces for P 2. The threads become

~t = [9, 14] and the blocks become b = [70]. In the segment presented, two boundary conditions

www.manaraa.com

37

are shown, a symmetric and fix all boundary. Here, the information from neighboring cells is

required, and is read at the start. Then the solution and normals are read from the neighboring

cell face, and the condition for the current cells face is evaluated. Other boundary conditions

are also implemented, but they follow similar operations from those already discussed, so they

shall be omitted.

Algorithm GPU BC

j = threadIdx.x

tmp = threadIdx.y

f = blockIdx.x ∗ blockDim.y + tmp

if f < nbf then

. Read type from textured memory

type = BCt[f ∗ 8]

if type = FIX ALL then

. Read solution information from textured memory

Qbfg [j + (0...4) ∗ nfp + f ∗ nfp ∗ nv] = BCt[(3...7) + f ∗ 8]

else if type = SYMMETRY then

. Also condition for inviscid wall

. Read cell and face location of boundary

cellb = BCt[1 + f ∗ 8]

faceb = BCt[2 + f ∗ 8]

. Get index of the left cell

idu = Ht[j + faceb ∗ nfp + 0 ∗ nfp ∗ nf + cellb ∗ nfp ∗ nf ∗ 6]

. Get normal directions

(nx, ny, nz) = Ht[j + faceb ∗ nfp + (2...4) ∗ nfp ∗ nf + cellb ∗ nfp ∗ nf ∗ 6]

. Read solution information from left cell

q[0...4] = Qt[idu+ (0...4) ∗ nsp]

. Evaluate symmetric condition

ρ ∗ (~v · ~n) = q[1] ∗ nx + q[2] ∗ ny + q[3] ∗ nz
Qbfg [j + 0 ∗ nfp + f ∗ nfp ∗ nv] = q[0]

Qbfg [j + 1 ∗ nfp + f ∗ nfp ∗ nv] = q[1]− 2 ∗ ρ ∗ (~v · n) ∗ nx
Qbfg [j + 2 ∗ nfp + f ∗ nfp ∗ nv] = q[2]− 2 ∗ ρ ∗ (~v · n) ∗ ny
Qbfg [j + 3 ∗ nfp + f ∗ nfp ∗ nv] = q[3]− 2 ∗ ρ ∗ (~v · n) ∗ nz
Qbfg [j + 4 ∗ nfp + f ∗ nfp ∗ nv] = q[4]

end if

end if

www.manaraa.com

38

Table 4.1 Thread switching

P k nsp nfp ∗ nf Thread difference

k = 1 8 24 16

k = 2 27 54 27

k = 3 64 96 32

k = 4 125 150 25

GPU RK

The purpose of this kernel is to update the solution in time. The thread grid is set up such

that ~t =
[
nsp,nv,

64
nsp

]
and the blocks as b =

[((
nc
tz

)
∗
(

1
14

)
+ 1
)
∗ 14

]
. As an example, consider

a domain with 31, 255 cells as before, but suppose the reconstruction is P 3. Then the thread

grid will become ~t = [64, 5, 1] and the number of blocks will be b = [31262]. Inputs to the kernel

(ξ1 and ξ2) depend on which Runge-Kutta stage is calculated.

Algorithm GPU RK(ξ1, ξ2)

i = threadIdx.x

j = threadIdx.y

tmp = threadIdx.z

k = blockIdx.x ∗ blockDim.z + tmp

id = i+ j ∗ nsp + k ∗ nsp ∗ nv
if k < nc then

Qg[id] = ξ1 ∗Qot [id] + (1− ξ1) ∗Qt[id] + ξ2 ∗∆t ∗Rest[id]

end if

4.2.2 Inviscid CUDA code

This section explains the inviscid section of the CUDA code where only one additional

kernel to those outlined in section 4.2.1 is required to update the inviscid residual.

Algorithm UpdateResiduals(ξ1, ξ2) (Inviscid only)

Launch kernel → GPU INV Flux

Launch kernel → GPU RK(ξ1, ξ2)

www.manaraa.com

39

GPU INV Flux

Here, the kernel for calculating the residual for the inviscid flux is explained. The threads

of this kernel must be able to switch freely between solution points per cell and the flux points

on all the faces per cell, hence the threads must always be the greater of the two values, which

will be the flux points on all the faces for P 1 to P 4. The thread grid for this kernel is given

as ~t =
[
nfp ∗ nf ,

64
nsp

]
, and the blocks are given as b =

[((
nc
ty

)
∗
(

1
14

)
+ 1
)
∗ 14

]
. When the

kernel switches between solution points and flux points, it is computationally expensive. As

an example consider table 4.1 with accuracy P 2, where the number of solution points per cell

is nsp = 27 while the number of flux points on each face is nfp ∗ nf = 54. When the kernel

switches from flux points on each face to solution points, there are (nfp∗nf−nsp) = 54−27 = 27

threads which are not active, or 50% of the block waiting. However, splitting the kernel into

several smaller kernels to avoid the thread switching decreases performance, as too much data

is re-loaded, hence the current configuration is optimal with the current GPU architecture. The

first part of GPU INV Flux involves setting up the threads properly and loading in shared

memory. The three variables ix, iy, and iz are indexes in each direction for the solution points.

For P 2, n1d
sp = 3, nfp = 9, and n varies from 0 to 26. So for n = 2, (ix, iy, iz) = (2, 0, 0),

for n = 8, (ix, iy, iz) = (0, 2, 0), and for n = 22, (ix, iy, iz) = (1, 1, 2). The use of modular

arithmetic allows the use of only one-dimensional blocks (threads in only one direction). The

above can easily be done with three dimensional blocks (threads in all three directions) but

yields a decrease in performance. The shared memory array is allocated with size, where

the value of size depends on the order of accuracy. For best performance, shared memory

should be exactly allocated, but can be allocated for a maximum value so the code can be

ran without re-compiling. The shared memory will hold data on both solution points and the

flux points on the faces, so the allocation must be the maximum of the two. As an example,

consider P 2 with two cells per block. Then size must be the maximum of nsp ∗ nv ∗ 2 = 270

or nfp ∗ nf ∗ nv ∗ 2 = 540. Thus, if size < 540 the code will not work for P 2 with two cells

calculated per block. Next, the if-statement for (n < nsp) keeps the threads operating on the

solution points while shared memory is loaded with the solution from textured memory. The

www.manaraa.com

40

shared memory will hold information for the number of cells calculated per block, so for the

P 2 example described before, the memory will contain information for two cells. Finally, the

transformations from textured memory are loaded into the local memory (Tl), and the threads

are synchronized to ensure all data is loaded properly.

Algorithm GPU INV Flux (Part 1)

n = threadIdx.x

tmp = threadIdx.y

ix = (n mod n1d
sp)

iy = (n/n1d
sp) mod n1d

sp

iz = (n mod nfp)

k = blockIdx.x ∗ blockDim.y + tmp

shared double tmps[size]

jmpsp = nsp ∗ tmp
jmpfp = nfp ∗ nf ∗ tmp
if k < nc then

if n < nsp then

. Load solution into shared memory

id = nv ∗ (n+ jmpsp)

tmps[(0...4) + id] = Qt[n+ (0...4) ∗ nsp + k ∗ nsp ∗ nv]

. Load transformation information into local memory

Tl[0...10] = Tt[n+ (0...10) ∗ nsp + k ∗ nsp ∗ 11]

syncthreads

...

Part 2 computes the derivatives (∂Q∂x , ∂Q
∂y , and ∂Q

∂z) and stores them into the local memory

of each thread. The values in the computational domain of ∂Q
∂ξ , ∂Q

∂η , and ∂Q
∂ζ are initialized

with zeros, then every thread through the if-statement of part 1 loops through the solution

points in one-dimension to calculate the computational domain derivatives and stores them in

local memory. Finally, the derivatives in the computational domain are transformed into the

derivatives in the physical domain and stored in local memory.

Part 3 computes the projection terms, Πj

(
~∇ · ~F (Qi,j)

)
, and stores them into local memory.

The necessary values for calculating
∂ ~F (Qi,j
∂Q are read from the shared memory array and the if-

statement for (n < nsp) is completed. The threads require synchronization from the command

syncthreads to ensure all threads complete calculations across the solution points before

proceeding to calculations through the flux points.

www.manaraa.com

41

Algorithm GPU INV Flux (Part 2)

...
∂Q
∂ξ l

[0...4] = 0, ∂Q
∂η l

[0...4] = 0, ∂Q
∂ζ l

[0...4] = 0

for m = 0 to (n1d
sp − 1) do

. Indeces for shared memory

idx = nv ∗ (m+ iy ∗ n1d
sp + iz ∗ nfp + jmpsp)

idy = nv ∗ (ix+m ∗ n1d
sp + iz ∗ nfp + jmpsp)

idz = nv ∗ (ix+ iy ∗ n1d
sp +m ∗ nfp + jmpsp)

. Now calculate the derivatives
∂Q
∂ξ l

[0...4] = ∂Q
∂ξ l

[0...4] + ct[m+ ix ∗ n1d
sp] ∗ tmps[(0...4) + idx]

∂Q
∂η l

[0...4] = ∂Q
∂η l

[0...4] + ct[m+ iy ∗ n1d
sp] ∗ tmps[(0...4) + idy]

∂Q
∂ζ l

[0...4] = ∂Q
∂ζ l

[0...4] + ct[m+ iz ∗ n1d
sp] ∗ tmps[(0...4) + idz]

end for

. Transform into the physical domain
∂Q
∂x l

[0...4] = ∂Q
∂ξ l

[0...4] ∗ Tl[0] + ∂Q
∂η l

[0...4] ∗ Tl[3] + ∂Q
∂ζ l

[0...4] ∗ Tl[6]
∂Q
∂y l

[0...4] = ∂Q
∂ξ l

[0...4] ∗ Tl[1] + ∂Q
∂η l

[0...4] ∗ Tl[4] + ∂Q
∂ζ l

[0...4] ∗ Tl[7]
∂Q
∂z l

[0...4] = ∂Q
∂ξ l

[0...4] ∗ Tl[2] + ∂Q
∂η l

[0...4] ∗ Tl[5] + ∂Q
∂ζ l

[0...4] ∗ Tl[8]

...

Algorithm GPU INV Flux (Part 3)

...

. Compute the projections

Πl[0] =
∂F (Qi,j)

∂ρ ∗ ∂Q∂x l[0] +
∂G(Qi,j)

∂ρ ∗ ∂Q∂y l[0] +
∂H(Qi,j)

∂ρ ∗ ∂Q∂z l[0]

Πl[1] =
∂F (Qi,j)
∂ρu ∗ ∂Q∂x l[1] +

∂G(Qi,j)
∂ρu ∗ ∂Q∂y l[1] +

∂H(Qi,j)
∂ρu ∗ ∂Q∂z l[1]

Πl[2] =
∂F (Qi,j)
∂ρv ∗ ∂Q∂x l[2] +

∂G(Qi,j)
∂ρv ∗ ∂Q∂y l[2] +

∂H(Qi,j)
∂ρv ∗ ∂Q∂z l[2]

Πl[3] =
∂F (Qi,j)
∂ρw ∗ ∂Q∂x l[3] +

∂G(Qi,j)
∂ρw ∗ ∂Q∂y l[3] +

∂H(Qi,j)
∂ρw ∗ ∂Q∂z l[3]

Πl[4] =
∂F (Qi,j)

∂e ∗ ∂Q∂x l[4] +
∂G(Qi,j)

∂e ∗ ∂Q∂y l[4] +
∂H(Qi,j)

∂e ∗ ∂Q∂z l[4]

end if

syncthreads

...

www.manaraa.com

42

In part 4 of the kernel, the code first switches the threads to the flux points, then reads

in indexes, values of the normals and face area, and solution information all from textured

memory and stores then into the local memory. If the index iPl < 0, then the left cell face is a

boundary face, and the information must be read from Qbft .

Algorithm GPU INV Flux (Part 4)

...

if (n < nfp ∗ nf) then

. Read information from flux points

iMl = Ht[n+ 0 ∗ nfp ∗ nf + k ∗ nfp ∗ nf ∗ 6]

iPl = Ht[n+ 1 ∗ nfp ∗ nf + k ∗ nfp ∗ nf ∗ 6]

(nxl , n
y
l , n

z
l) = Ht[n+ (2, 3, 4) ∗ nfp ∗ nf + k ∗ nfp ∗ nf ∗ 6]

|~Sn|l = Ht[n+ 5 ∗ nfp ∗ nf + k ∗ nfp ∗ nf ∗ 6]

. Read information from the left solution

QLl [0...4] = Qt[iMl + (0...4) ∗ nsp]

if (iPl < 0) then

. Located at a boundary

QRl [0...4] = Qbft [−1− iPl + (0...4) ∗ nsp]

else

. Just the neighbor cell

QRl [0...4] = Qt[iPl + (0...4) ∗ nsp]

end if

...

Part 5 of the kernel calculates the values for ρL, uL, vL, wL, and pL from the QLl array from

part 4 and uses the data to formulate the fluxes, FL(QL), GL(QL), and HL(QL). Then the

common flux Fncoml(Q
L
l , Q

R
l) is calculated using either the Rusanov or Roe approach as described

in Section 3.2, and the values are stored into the local memory of each thread. Finally, the flux

difference calculation is run in local memory and saved into the shared memory array allocated

previously. Storing the flux difference in shared memory will allow the threads to access the

information when the kernel switches back to solution points in part 6.

The final section of GPU INV Flux computes the corrections using the lifting coefficients

and the flux difference. The lifting coefficients, αl, are read from textured memory and stored

in local memory while the flux difference resides in shared memory. The indexes read from Ridx

and Rloc locate the appropriate indexes for the flux points, faces, and corrections. The indexes

are then used to gather the necessary information from the textured and shared memory. Prior

www.manaraa.com

43

Algorithm GPU INV Flux (Part 5)

...

. Now calculate the fluxes

Fl(Q
L
l) is calculated (see equation 3.1.3)

Gl(Q
L
l) is calculated (see equation 3.1.3)

Hl(Q
L
l) is calculated (see equation 3.1.3)

tmpf [0...4] = Fl[0...4] ∗ nxl +Gl[0...4] ∗ nyl +Hl[0...4] ∗ nzl
. Now calculate the common flux using Roe or Rusanov

Fncoml(Q
L
l , Q

R
l) is calculated (see section 3.2)

. Formulate the flux difference

id = nv ∗ (n+ jmpfp)

tmps[(0...4) + id] =
(
Fncoml [0...4]− tmpf [0...4]

)
∗ |~Sn|l

end if

syncthreads

...

to this algorithm, the residual calculation was inefficient and resulted in large computational

cost. On the CPU code, the residual uses a step array to jump to the appropriate residual

location. Consider the algorithm CPU RES Update and let the projection terms already

reside in the residual array. In addition, the example CPU code only shows the update for

the corrections at one cell. The location in memory of the residual update is controlled by

the step array as shown, since flux points are shared per face, but the solution point is the

same. Consider figure 4.1, which shows one face of a three dimensional hexahedral cell with

solution point numbering. Solution point 5 shares no common faces, hence the solution point

is only updated once. However, points 2, 4, 6, and 8 all have another face in common, so the

solution update depends on flux point values at two different faces. Finally, points 1, 3, 7, and 9

have three faces in common, further complicating the update. A direct implementation of this

algorithm in the GPU code results in poor performance, due to non-coalesced global memory

writes. Migrating to the algorithm GPU INV Flux Part 6 yields a 15 times performance

increase when compared to a direct conversion of CPU RES Update on the GPU.

4.2.3 Viscous CUDA code

For the calculation of the viscous flux, three extra kernels are required in addition to those

specified in Section 4.2.1. These kernels calculate the solution gradient, ~∇Q, formulate the

www.manaraa.com

44

Figure 4.1 Face flux point numbering for P 2

Algorithm GPU INV Flux (Part 6)

...

if (n < nsp) then

. Read count per point and jump information

cntl = Ridxt [0 + n ∗ 2 + k ∗ 2 ∗ nsp]

jmpl = Ridxt [1 + n ∗ 2 + k ∗ 2 ∗ nsp]

δl[0...4] = 0

for j = 0 to (cntl − 1) do

. Read each points flux, correction, and face values

corl = Rloct [0 + 3 ∗ (j + jmpl)]

fpl = Rloct [1 + 3 ∗ (j + jmpl)]

facel = Rloct [2 + 3 ∗ (j + jmpl)]

id = nv ∗ (fpl + facel ∗ nfp + jmpfp)

. Formulate the corrections

δl[0...4] = δl[0...4] + αt[corl] ∗ tmps[(0...4) + id]

end for

. Update the residual

Resg[n+ (0...4) ∗ nsp + k ∗ nsp ∗ nv] = −Πl[0...4]− δl[0...4] ∗ Tl[10]

end if

end if

www.manaraa.com

45

Algorithm CPU RES Update

. Step array for jumping

step[0...5] = (n1d
sp ,−n1d

sp ,−1, 1,nfp,−nfp)

for i = 0 to (nf − 1) do

for j = 0 to (nfp − 1) do

ip = j ∗ nv
for m = 0 to (n1d

sp) do

id = j + i ∗ nfp +m ∗ step[i]

Res[(0....4) + id ∗ nv] = Res[(0....4) + id ∗ nv]− α[m] ∗ Fn[ip] ∗ T [10 + id ∗ 11]

end for

end for

end for

viscous flux polynomial across the solution points, and update the residual. The calculation

of ~∇Q and the viscous flux polynomial are completed in separate kernels due to performance

benefits. The solution derivative is required multiple times and across neighboring cells, while

computing the viscous flux polynomial with the residual involves a large memory requirement

and excessive switching between solution points and flux points on faces within one kernel,

limiting code performance. These reasons require the calculations to be completed separately

and read from textured memory when required. Next, the three viscous flux kernels will be

described in detail.

Algorithm UpdateResiduals(ξ1,ξ2) (Viscous only)

Launch kernel → GPU GRAD Q

Launch kernel → GPU VIS Fxyz

Launch kernel → GPU VIS Flux

Launch kernel → GPU RK(ξ1,ξ2)

GPU GRAD Q

In GPU GRAD Q, the solution derivative, ~∇Q, is calculated. The thread grid for this

kernel is ~t =
[
nsp,

256
nsp

]
, and the blocks are given as b =

[((
nc
ty

)
∗
(

1
14

)
+ 1
)
∗ 14

]
. The algorithm

is very similar to Part 1 and Part 2 of GPU INV Flux, except the allocation size of shared

memory is larger, and the transformation to the physical domain is stored into global memory,

rather than local memory. If the reconstruction is P 3 then the number of cells per block is

four and the size of allocation of shared memory is, size = nsp ∗ nv ∗ 4 = 1280. In addition,

www.manaraa.com

46

no if-statement is required in this kernel, since the threads are specified to run only through

solution points in cells.

Algorithm GPU GRAD Q

n = threadIdx.x

tmp = threadIdx.y

ix = (n mod n1d
sp)

iy = (n/n1d
sp) mod n1d

sp

iz = (n mod nfp)

k = blockIdx.x ∗ blockDim.y + tmp

shared double tmps[size]

jmpsp = nsp ∗ tmp
if k < nc then

. Load solution into shared memory

tmps[(0...4) + nv ∗ (n+ jmpsp)] = Qt[n+ (0...4) ∗ nsp + k ∗ nsp ∗ nv]

. Load transformation information into local memory

Tl[0...10] = Tt[n+ (0...10) ∗ nsp + k ∗ nsp ∗ 11]

. Ensure everything is loaded

syncthreads
∂Q
∂ξ l

= 0, ∂Q
∂η l

= 0, ∂Q
∂ζ l

= 0

for m = 0 to (n1d
sp − 1) do

. Indeces for shared memory

idx = nv ∗ (m+ iy ∗ n1d
sp + iz ∗ nfp + jmpsp)

idy = nv ∗ (ix+m ∗ n1d
sp + iz ∗ nfp + jmpsp)

idz = nv ∗ (ix+ iy ∗ n1d
sp +m ∗ nfp + jmpsp)

. Now calculate the derivatives
∂Q
∂ξ l

[0...4] = ∂Q
∂ξ l

[0...4] + ct[m+ ix ∗ n1d
sp] ∗ tmps[(0...4) + idx]

∂Q
∂η l

[0...4] = ∂Q
∂η l

[0...4] + ct[m+ iy ∗ n1d
sp] ∗ tmps[(0...4) + idy]

∂Q
∂ζ l

[0...4] = ∂Q
∂ζ l

[0...4] + ct[m+ iz ∗ n1d
sp] ∗ tmps[(0...4) + idz]

end for

id = n+ k ∗ 3 ∗ nv ∗ nsp
. Transform into the physical domain and store in global memory

Qx,y,zg [id+ (0...4) ∗ nsp] = ∂Q
∂ξ l

[0...4] ∗ Tl[0] + ∂Q
∂η l

[0...4] ∗ Tl[3] + ∂Q
∂ζ l

[0...4] ∗ Tl[6]

Qx,y,zg [id+ (5...9) ∗ nsp] = ∂Q
∂ξ l

[0...4] ∗ Tl[1] + ∂Q
∂η l

[0...4] ∗ Tl[4] + ∂Q
∂ζ l

[0...4] ∗ Tl[7]

Qx,y,zg [id+ (10...14) ∗ nsp] = ∂Q
∂ξ l

[0...4] ∗ Tl[2] + ∂Q
∂η l

[0...4] ∗ Tl[5] + ∂Q
∂ζ l

[0...4] ∗ Tl[8]

end if

GPU VIS Fxyz

The next kernel, GPU VIS Fxyz, computes the viscous flux at the solution points and

stores the data in global memory. This thread grid is ~t =
[
nfp ∗ nf ,

64
nsp

]
, and the blocks are

www.manaraa.com

47

b =
[((

nc
ty

)
∗
(

1
14

)
+ 1
)
∗ 14

]
. This kernel, like GPU INV Flux, is explained in several parts,

due to the size and complexity. Part 1 starts the kernel on the flux points over the faces of the

cell. Index information, face areas, and the solutions are read from textured memory, like that

of GPU INV Flux Part 4. Once all the data is read, the solution difference is stored into the

shared memory array. Here, the size of shared memory will be, size = nv ∗ nf ∗ nfp ∗ ty, where

ty is the number of cells computed per block. Shared memory is required because data needs

to be shared between the solution points and flux points. The if-statement is then ended over

the flux points, and the if-statement over solution points will start in Part 2.

Algorithm GPU VIS Fxyz (Part 1)

n = threadIdx.x

tmp = threadIdx.y

k = blockIdx.x ∗ blockDim.y + tmp

shared double tmps[size]

jmpfp = nfp ∗ nf ∗ tmp
if k < nc then

if (n < nfp ∗ nf) then

. Read information from flux points

iMl = Ht[n+ 0 ∗ nfp ∗ nf + k ∗ nfp ∗ nf ∗ 6]

iPl = Ht[n+ 1 ∗ nfp ∗ nf + k ∗ nfp ∗ nf ∗ 6]

|~Sn|l = Ht[n+ 5 ∗ nfp ∗ nf + k ∗ nfp ∗ nf ∗ 6]

. Read information from the left solution

QLl [0...4] = Qt[iMl + (0...4) ∗ nsp]

if (iPl < 0) then

. Located at a boundary

QRl [0...4] = Qbft [−1− iPl + (0...4) ∗ nsp]

else

. Just the nieghbor cell

QRl [0...4] = Qt[iPl + (0...4) ∗ nsp]

end if

id = nv ∗ (n+ jumpfp)

. Store the Q-difference

tmps[(0...4) + id] = 1
2 ∗
(
QRl [0...4]−QLl [0...4]

)
∗ |~Sn|l

end if

syncthreads

...

Part 2 of the kernel begins with fetching the solution variables over all the solution points

in the cell, then data from Ridxt is read for an identical operation as described in updating the

www.manaraa.com

48

inviscid residual. The Jacobian inverse and the solution gradient are required as well, which

are stored under local memory in 1
|J | l

and ~Rl respectfully.

Algorithm GPU VIS Fxyz (Part 2)

...

if (n < nsp) then

. Get solution data

ρl = Qt[n+ 0 ∗ nsp + k ∗ nsp ∗ nv]

ul = 1
ρl
∗Qt[n+ 1 ∗ nsp + k ∗ nsp ∗ nv]

vl = 1
ρl
∗Qt[n+ 2 ∗ nsp + k ∗ nsp ∗ nv]

wl = 1
ρl
∗Qt[n+ 3 ∗ nsp + k ∗ nsp ∗ nv]

el = Qt[n+ 4 ∗ nsp + k ∗ nsp ∗ nv]

. Read count per point and jump information

cntl = Ridxt [0 + n ∗ 2 + k ∗ 2 ∗ nsp]

jmpl = Ridxt [1 + n ∗ 2 + k ∗ 2 ∗ nsp]

. Read Jacobian inverse
1
|J | l

= Tt[n+ 10 ∗ nsp + k ∗ nsp ∗ 11]

. Now get gradient from previous calculation

id = n+ k ∗ nsp ∗ nv ∗ 3
~Rl[0...14] = Qx,y,zt [id+ (0...14) ∗ nsp]

...

The next part follows an identical operation from Part 6 of GPU INV Flux. Each solution

point loops through cntl times and reads the appropriate index locations of the correction, flux

point, and face. The memory location of the correction term is found with corl, and the

normals are location with the flux point and face locations (all from textured memory and

stored locally). Finally, the gradient corrections are computed from the solution difference

stored in shared memory from earlier, the correction coefficient, the inverse Jacobian, and the

normal directions.

Part 4 of GPU VIS Fxyz is the final section and computes the viscous flux at the solution

points. All prior computations into local memory are employed to formulate the viscous flux

and store the result into global memory for later use. The first four entries are Fv(Q, ~∇Q), the

second four Gv(Q, ~∇Q), and the final four Hv(Q, ~∇Q). They are stored into global memory so

the data can be accessed in the next kernel when the viscous flux residual is computed.

www.manaraa.com

49

Algorithm GPU VIS Fxyz (Part 3)

...

for j = 0 to (cntl − 1) do

. Read each points flux, correction, and face values

corl = Rloct [0 + 3 ∗ (j + jmp)]

fpl = Rloct [1 + 3 ∗ (j + jmp)]

facel = Rloct [2 + 3 ∗ (j + jmp)]

. Now the normals

(nx, ny, nz)l = Ht[fpl + facel ∗ nfp + (2, 3, 4) ∗ nfp ∗ nf + k ∗ nfp ∗ nf ∗ 6]

. Gradient corrections

id = nv ∗ (fpl + facel ∗ nfp + jmpfp)
~Rl[0...4] = ~Rl[0...4] + tmps[(0...4) + id] ∗ αt[corl] ∗ 1

|J | l
∗ nxl

~Rl[5...9] = ~Rl[5...9] + tmps[(0...4) + id] ∗ αt[corl] ∗ 1
|J | l
∗ nyl

~Rl[10...14] = ~Rl[10...14] + tmps[(0...4) + id] ∗ αt[corl] ∗ 1
|J | l
∗ nzl

end for

...

Algorithm GPU VIS Fxyz (Part 4)

...

. Compute the stress components (equation 3.1.28 and equation 3.1.29)

. Formulate viscous flux at solution points (Fv, Gv, Hv)

. Only 4 values per direction, since ~Fv[0] = 0

Fvspg [n+ (0...3) ∗ nsp + k ∗ nsp ∗ 12] = Fv(Ql, ~Rl) (see equation 3.1.26)

Fvspg [n+ (4...7) ∗ nsp + k ∗ nsp ∗ 12] = Gv(Ql, ~Rl) (see equation 3.1.26)

Fvspg [n+ (8...11) ∗ nsp + k ∗ nsp ∗ 12] = Hv(Ql, ~Rl) (see equation 3.1.26)

end if

end if

www.manaraa.com

50

GPU VIS Flux

The final kernel for computing the viscous flux is discussed here. This thread grid and blocks

are set-up identical to the previous kernel, ~t =
[
nfp ∗ nf ,

64
nsp

]
and b =

[((
nc
ty

)
∗
(

1
14

)
+ 1
)
∗ 14

]
.

The discussion of this kernel will also be completed in multiple parts due to length and complex-

ity. Modular arithmetic is employed in this kernel, like that of GPU INV Flux Part 1. Two

arrays in shared memory are required for this kernel, the size of tmps is size = nv ∗nf ∗nfp ∗ ty,

same as before. The new shared memory array, fs, will contain the viscous flux information at

the solution points. Its allocation size will be sizef = nsp ∗ ty ∗ 12. So for a P 2 reconstruction,

size = 540 and sizef = 648 with ty = 2, nsp = 27, and nfp = 9. The kernel starts with the

threads operating on the flux points, reading in index locations, normals, and face areas. Then,

the bdf term will inform the code the type of boundary at interfaces. Next, the left and right

states are found, identical to previous kernels, with the addition of the inverse Jacobian at the

interface of the two cells. Finally, the solution difference and addition are stored into the local

memory of each thread.

In Part 2 of the kernel, the common gradient for the BR2 scheme is calculated. First, the

left gradient must be read and the viscous DG correction (see table 3.3) to the gradient due

to the common solution at the face must be added to it. The right solution gradient is also

required, and if the face is at a boundary, then the right solution gradient is the same as the left

solution gradient, otherwise, the gradient must be read in and corrected with the local lifting

correction. The common gradient is then calculated and stored into local memory.

Part 3 of the kernel contains similar operations to that of GPU VIS Fxyz Part 4, with the

exception that when calculating the stresses, the common gradient, ~∇Qcoml , will be used. The

bdf term controls the temperature gradient (~∇T) at the interfaces for adiabatic and isothermal

conditions. Once the common viscous flux is calculated, the inviscid flux and common Riemann

flux must be formulated, similar to GPU INV Flux Part 5. The viscous flux found at the

solution points is then read from textured memory, the total flux difference is calculated, and

the result is stored into shared memory. Finally the threads are synchronized, as the kernel

prepares for computations on solution points.

www.manaraa.com

51

Algorithm GPU VIS Flux (Part 1)

n = threadIdx.x

tmp = threadIdx.y

ix = (n mod n1d
sp)

iy = (n/n1d
sp) mod n1d

sp

iz = (n mod nfp)

k = blockIdx.x ∗ blockDim.y + tmp

shared double tmps[size]

shared double fs[sizef]

jmpsp = nsp ∗ tmp
jmpfp = nfp ∗ nf ∗ tmp
if k < nc then

if n < nfp ∗ nf then

. Read information from flux points, viscous boundary, and inverse Jacobian

iMl = Ht[n+ 0 ∗ nfp ∗ nf + k ∗ nfp ∗ nf ∗ 6]

iPl = Ht[n+ 1 ∗ nfp ∗ nf + k ∗ nfp ∗ nf ∗ 6]

(nxl , n
y
l , n

z
l) = Ht[n+ (2, 3, 4) ∗ nfp ∗ nf + k ∗ nfp ∗ nf ∗ 6]

|~Sn|l = Ht[n+ 5 ∗ nfp ∗ nf + k ∗ nfp ∗ nf ∗ 6]

bdf = Vt[n+ k ∗ nfp ∗ nf]
1
|J |

L

l
= Tt[iMl − k ∗ nsp ∗ nv + 10 ∗ nsp + k ∗ nsp ∗ 11]

. Read information from the left solution

QLl [0...4] = Qt[iMl + (0...4) ∗ nsp]

if (iPl < 0) then

. Located at a boundary

QRl [0...4] = Qbft [−1− iPl + (0...4) ∗ nsp]

else

. Just the nieghbor cell

QRl [0...4] = Qt[iPl + (0...4) ∗ nsp]

id = iPl/(nsp ∗ nv)
1
|J |

R

l
= Tt[iPl − id ∗ nv ∗ nsp + 10 ∗ nsp + id ∗ nsp ∗ 11]

end if

. Store the Q-difference and Q-addition

δQl[0...4] = 1
2

(
QRl [0...4]−QLl [0...4]

)
ρpl = 1

2

(
QRl [0] +QLl [0]

)
(upl , v

p
l , w

p
l) = 1

2

(
QRl [1, 2, 3] +QLl [1, 2, 3]

)
1
ρpl

epl = 1
2

(
QRl [4] +QLl [4]

)
...

www.manaraa.com

52

Algorithm GPU VIS Flux (Part 2)

...

. Read in the left gradient

m = iMl − k ∗ nsp ∗ nv + k ∗ nv ∗ 3 ∗ nsp

Qx,Ll [0...4] = Qxyzt [m+ (0...4) ∗ nsp] + βt ∗ δQl[0...4] ∗ 1
|J |

L

l
∗ |~Sn|l ∗ nxl

Qy,Ll [0...4] = Qxyzt [m+ (5...9) ∗ nsp] + βt ∗ δQl[0...4] ∗ 1
|J |

L

l
∗ |~Sn|l ∗ nyl

Qz,Ll [0...4] = Qxyzt [m+ (10...14) ∗ nsp] + βt ∗ δQl[0...4] ∗ 1
|J |

L

l
∗ |~Sn|l ∗ nzl

if (iPl < 0) then

. Located at a boundary

Qx,Rl [0...4] = Qx,Ll [0...4]

Qy,Rl [0...4] = Qy,Ll [0...4]

Qz,Rl [0...4] = Qz,Ll [0...4]

else

. Just the nieghbor cell

id = iPl/(nsp ∗ nv)

m = iPl − id ∗ nv ∗ nsp + id ∗ nv ∗ 3 ∗ nsp

Qx,Rl [0...4] = Qxyzt [m+ (0...4) ∗ nsp] + β ∗ δQl[0...4] ∗ 1
|J |

R

l
∗ |~Sn|l ∗ nxl

Qy,Rl [0...4] = Qxyzt [m+ (5...9) ∗ nsp] + β ∗ δQl[0...4] ∗ 1
|J |

R

l
∗ |~Sn|l ∗ nyl

Qz,Rl [0...4] = Qxyzt [m+ (10...14) ∗ nsp] + β ∗ δQl[0...4] ∗ 1
|J |

R

l
∗ |~Sn|l ∗ nzl

end if

. Now average the gradient (BR2)

~∇Qcoml [0...4] =
Qx,Rl [0...4]+Qx,Ll [0...4]

2

~∇Qcoml [5...9] =
Qy,Rl [0...4]+Qy,Ll [0...4]

2

~∇Qcoml [10...14] =
Qz,Rl [0...4]+Qz,Ll [0...4]

2

...

www.manaraa.com

53

Algorithm GPU VIS Flux (Part 3)

...

. Compute the stress components

. (see equation 3.1.28 and equation 3.1.29)

if (bdf == 1) then

. Adiabatic wall(
∂T
∂x l

, ∂T∂y l
, ∂T∂z l

)
= (0, 0, 0)

end if

. Formulate the common viscous flux

Fvcoml [(0...3)] = Fv(Q
com
l , ~∇Qcoml) (see equation 3.1.26)

Gvcoml [(0...3)] = Gv(Q
com
l , ~∇Qcoml) (see equation 3.1.26)

Hvcoml [(0...3)] = Hv(Q
com
l , ~∇Qcoml) (see equation 3.1.26)

. Now get the normal direction of the common viscous flux

Fvncom,l[(0...3)] = Fvcoml [(0...3)] ∗ nxl +Gvcoml [(0...3)] ∗ nyl +Hvcoml [(0...3)] ∗ nzl
. Now calculate the fluxes

Fl(Q
L
l) is calculated (see equation 3.1.3)

Gl(Q
L
l) is calculated (see equation 3.1.3)

Hl(Q
L
l) is calculated (see equation 3.1.3)

. Now calculate the common flux using Roe or Rusanov

Fncoml(Q
L
l , Q

R
l) is calculated (see section 3.2)

tmpFl[0...4] = Fncoml [0]− (Fl[0...4] ∗ nxl +Gl[0..4] ∗ nyl +Hl[0...4] ∗ nzl)
. Read in previous calculation of viscous flux at solution points

Fvspl [0...11] = Fvspt [iM− k ∗ nsp ∗ nv + (0...11) ∗ nsp + k ∗ nsp ∗ 12]

tmpF vl [0...3] = −Fvspl [0...3] ∗ nxl − Fv
sp
l [4...7] ∗ nyl − Fv

sp
l [8...11] ∗ nzl

. Compute and store the flux difference into shared memory

id = n ∗ nv + k ∗ nv ∗ nfp ∗ nf
tmps[0 + id] = tmpFl[0] ∗ |~Sn|l
tmps[1 + id] = (−Fvncom,l[0] + tmpFl[1]− tmpF vl [0]) ∗ |~Sn|l
tmps[2 + id] = (−Fvncom,l[1] + tmpFl[2]− tmpF vl [1]) ∗ |~Sn|l
tmps[3 + id] = (−Fvncom,l[2] + tmpFl[3]− tmpF vl [2]) ∗ |~Sn|l
tmps[4 + id] = (−Fvncom,l[3] + tmpFl[4]− tmpF vl [3]) ∗ |~Sn|l

end if

syncthreads

...

www.manaraa.com

54

In part 4 of the kernel, all necessary data is loaded from textured memory into the local

thread memory. Then the flux is transformed from the physical domain into the computational

domain (i.e. ~F v to ~̃F v) and stored into the shared memory array fs. The threads are again

synchronized to ensure all threads have written to the shared memory array before continuing.

Algorithm GPU VIS Flux (Part 4)

...

if (n < nsp) then

. Load from textured memory

Tl[0...10] = Tt[n+ (0...10) ∗ nsp + k ∗ nsp ∗ 11]

cntl = Ridxt [0 + n ∗ 2 + k ∗ 2 ∗ nsp]

jmpl = Ridxt [1 + n ∗ 2 + k ∗ 2 ∗ nsp]
∂Q
∂x l

[0...4] = Qx,y,zt [n+ (0...4) ∗ nsp + k ∗ nsp ∗ 3]
∂Q
∂y l

[0...4] = Qx,y,zt [n+ (5...9) ∗ nsp + k ∗ nsp ∗ 3]
∂Q
∂z l

[0...4] = Qx,y,zt [n+ (10...14) ∗ nsp + k ∗ nsp ∗ 3]

Ql[0...5] = Qt[n+ (0...4) ∗ nsp + k ∗ nsp ∗ nv]

Fvspl [0...11] = Fvspt [n+ (0...11) ∗ nsp + k ∗ nsp ∗ 12]

. Transform the flux

id = 12 ∗ (n+ jmpsp)

fs[(0...3) + id] = (Fvspl [0...3] ∗ Tl[0] + Fvspl [4...7] ∗ Tl[1] + Fvspl [8...11] ∗ Tl[2]) ∗ Tl[9]

fs[(4...7) + id] = (Fvspl [0...3] ∗ Tl[3] + Fvspl [4...7] ∗ Tl[4] + Fvspl [8...11] ∗ Tl[5]) ∗ Tl[9]

fs[(8...11) + id] = (Fvspl [0...3] ∗ Tl[6] + Fvspl [4...7] ∗ Tl[7] + Fvspl [8...11] ∗ Tl[8]) ∗ Tl[9]

syncthreads

...

The next part of the viscous flux kernel uses the transformed flux variables from shared

memory and forms the flux polynomial in the computational domain with a Lagrange interpo-

lation polynomial from textured memory (see equaton 3.1.34). The data is stored in the local

memory of each thread, and only has four entries in each coordinate direction, since ~̃F v[0] = 0.

The final part of the kernel formulates both the projections and corrections to update the

residual. To compute the projections, the values for calculating ∂ ~F (Qi,j)
∂Q are read from the local

memory array, Ql, and the solution gradient terms are read from textured memory (completed

earlier). The viscous flux polynomial computed in the previous kernel is also included in the

calculation (stored in tmpf [0...3]). Once the projections are complete, the correction terms

are calculated in the same way as discussed in part 6 of GPU INV Flux, the residual is

computed, and the solution is updated with the kernel GPU RK.

www.manaraa.com

55

Algorithm GPU VIS Flux (Part 5)

...
∂F
∂ξ l

= 0, ∂F
∂η l

= 0, ∂F
∂ζ l

= 0

for m = 0 to (n1d
sp − 1) do

. Indeces for shared memory

idx = nv ∗ (m+ iy ∗ n1d
sp + iz ∗ nfp + jmpsp)

idy = nv ∗ (ix+m ∗ n1d
sp + iz ∗ nfp + jmpsp)

idz = nv ∗ (ix+ iy ∗ n1d
sp +m ∗ nfp + jmpsp)

∂F
∂ξ l

[0...3] = ∂F
∂ξ l

[0...3] + ct[m+ ix ∗ n1d
sp] ∗ fs[(0...3) + idx]

∂F
∂η l

[0...3] = ∂F
∂η l

[0...3] + ct[m+ iy ∗ n1d
sp] ∗ fs[(4...7) + idy]

∂F
∂ζ l

[0...3] = ∂F
∂ζ l

[0...3] + ct[m+ iz ∗ n1d
sp] ∗ fs[(8...11) + idz]

end for

...

Algorithm GPU VIS Flux (Part 6)

...

tmpf [0...3] =
(
∂F
∂ξ l

[0...3] + ∂F
∂η l

[0...3] + ∂F
∂ζ l

[0...3]
)
∗ Tl[10]

. Projections

Πl[0] =
∂F (Qi,j)

∂ρ
∂Q
∂x l

[0] +
∂G(Qi,j)

∂ρ
∂Q
∂y l

[0] +
∂H(Qi,j)

∂ρ
∂Q
∂z l

[0]

Πl[1] =
∂F (Qi,j)
∂ρu

∂Q
∂x l

[1] +
∂G(Qi,j)
∂ρu

∂Q
∂y l

[1] +
∂H(Qi,j)
∂ρu

∂Q
∂z l

[1]− tmpf [0]

Πl[2] =
∂F (Qi,j)
∂ρv

∂Q
∂x l

[2] +
∂G(Qi,j)
∂ρv

∂Q
∂y l

[2] +
∂H(Qi,j)
∂ρv

∂Q
∂z l

[2]− tmpf [1]

Πl[3] =
∂F (Qi,j)
∂ρw

∂Q
∂x l

[3] +
∂G(Qi,j)
∂ρw

∂Q
∂y l

[3] +
∂H(Qi,j)
∂ρw

∂Q
∂z l

[3]− tmpf [2]

Πl[4] =
∂F (Qi,j)

∂e
∂Q
∂x l

[4] +
∂G(Qi,j)

∂e
∂Q
∂y l

[4] +
∂H(Qi,j)

∂e
∂Q
∂z l

[4]− tmpf [3]

δl[0...4] = 0

for j = 0 to (cntl − 1) do

. Read each points flux, correction, and face values

corl = Rloct [0 + 3 ∗ (j + jmpl)]

fpl = Rloct [1 + 3 ∗ (j + jmpl)]

facel = Rloct [2 + 3 ∗ (j + jmpl)]

id = nv ∗ (fpl + facel ∗ nfp + jmpfp)

. Formulate the corrections

δl[0...4] = δl[0...4] + αt[corl] ∗ tmps[(0...4) + id]

end for

. Update the residual

Resg[n+ (0...4) ∗ nsp + k ∗ nsp ∗ nv] = −Πl[0...4]− δl[0...4] ∗ Tl[10]

end if

end if

www.manaraa.com

56

To achieve good performance from the GPU code, the optimization strategy outlined in

section 2.2 is followed. The following list summarizes the optimizations present in every kernel

discussed.

• Keep shared memory usage low, and try to reuse shared memory

• Storage order of data in shared, textured, and global memory

• Multiple cells calculated on one multi-processor (where it is possible)

• Position of thread synchronization

• One global write per thread (where it is possible)

4.2.4 Additional CUDA kernels

In addition to the kernels discussed, three more CUDA kernels are implemented for addi-

tional data requirements. These kernels are explained in this section. Two of the three compute

the mean solution and the mean fluctuations, while the third grabs pressure data at prescribed

points.

GPU Pressure

This kernel computes pressure data at prescribed positions in the flow so the pressure can

be transfered to the CPU and stored. The threads are ~t = [np] and the number of blocks are

b = [1], where np is the number of pressure probes in the domain. Each pressure probe is

located in a cell k, with solution point index j. The cell and solution point location are found

in the CPU code, and sent into textured memory to be read in this kernel. The variable idx

runs through each pressure probe by reading the cell and solution point location from memory,

grabbing the necessary variables from textured memory from the indexes, and computing the

pressure.

www.manaraa.com

57

Algorithm GPU Pressure

idx = threadIdx.x

k = Pt[0 + 2 ∗ idx]

j = Pt[1 + 2 ∗ idx]

Ql[0...4] = Qt[j + (0...4) ∗ nsp + k ∗ nsp ∗ nv]

. Compute pressure from Ql and store in global memory (equation 3.1.3)

GPU Mean

The following kernel means the flow variables through time. The thread grid for this kernel

is ~t =
[
nsp,

256
nsp

]
, and the blocks are given as b =

[((
nc
ty

)
∗
(

1
14

)
+ 1
)
∗ 14

]
. The current number

of averages, navg, is input to the kernel and is incremented one when the kernel is completed.

State variables and averaged variables are read into local memory from textured memory, then

the variables are averaged and stored into global memory. The averaged variables are needed

to compute the fluctuations in the kernel following.

Algorithm GPU Mean

n = threadIdx.x

tmp = threadIdx.y

k = blockIdx.x ∗ blockDim.y + tmp

if k < nc then

Ql[0...4] = Qt[n+ (0...4) ∗ nsp + k ∗ nsp ∗ nv]

Qavgl [0...4] = Qavgt [n+ (0...4) ∗ nsp + k ∗ nsp ∗ nv]

. Calculated the state variables, ρ, u, v, w, and p from Ql

Qavgg [n+ (0...4) ∗ nsp + k ∗ nsp ∗ nv] =
navg∗Qavgl [0...4]+(ρ, u, v, w, p)

navg+1

end if

GPU Mean

The final kernel discussed averages the fluctuations in the flow. The threads and blocks are

set-up exactly as the previous kernel. The required variables are read from textured memory,

the fluctuations are calculated, and the proper values are averaged and stored in the global

memory array Qmavg
g for post-processing.

www.manaraa.com

58

Algorithm GPU Mean Fluctuation

n = threadIdx.x

tmp = threadIdx.y

k = blockIdx.x ∗ blockDim.y + tmp

if k < nc then

Ql[0...4] = Qt[n+ (0...4) ∗ nsp + k ∗ nsp ∗ nv]

Qavgl [0...4] = Qavgt [n+ (0...4) ∗ nsp + k ∗ nsp ∗ nv]

Qmavg
l [0...5] = Qmavg

t [n+ (0...5) ∗ nsp + k ∗ nsp ∗ 6]

. Calculated the state variables, ρ, u, v, w, and p from Ql

. Calculated the averaged state variables, ρ, u, v, w, and p from Qavgl

u′ = u− u, v′ = v − v, w′ = w − w
Qmavg

g [n+ (0...5) ∗ nsp + k ∗ nsp ∗ nv] =
navg∗Qmavgl [0...5]+(u′u′, v′v′, w′w′, u′v′, v′w′, w′u′)

navg+1

end if

www.manaraa.com

59

CHAPTER 5. RESULTS

This chapter covers the results from the GPU CUDA CPR code. Section 1 verifies the

GPU code by comparing with both the CPU code and case studies while section 2 details the

performance increase from the CPU to the GPU code.

5.1 CUDA verification

The verification of the CUDA code with the CPU version is completed by monitoring the

residuals at several time steps with each boundary condition implemented for both viscous

and inviscid implementations. Table 5.1 shows the results from the inviscid calculation while

table 5.2 shows results from viscous calculation on an arbitrary grid initialized with free stream

conditions throughout the domain. In both cases, double precision accuracy was used and the

polynomial order was P 2. The residual at all time is 13 plus digits accurate, ensuring the GPU

code is exact to the CPU code. Additional orders of accuracy were also tested, and the residual

was verified to be 13 plus digits accurate as well (not shown here).

www.manaraa.com

60

Table 5.1 Inviscid GPU code verification (P 2)

Iteration CPU Residual GPU Residual

1 1.8773777499999569e-01 1.8773777499999569e-01

15 1.2483354017340828e-01 1.2483354017340825e-01

75 7.5362490125664539e-02 7.5362490125664455e-02

99 6.9173038873660234e-02 6.9173038873660234e-02

Table 5.2 Viscous GPU code verification (P 2)

Iteration CPU Residual GPU Residual

10 1.2105356644868599e-01 1.2105356644868595e-01

50 1.0423350000835133e-01 1.0423350000835137e-01

99 9.1455714995369808e-02 9.1455714995369711e-02

200 8.0756080475461303e-02 8.0756080475461345e-02

To test the high-order capability of the developed CUDA GPU code, the following case is

considered. A cylinder is placed in the center of a domain with a pressure pulse [28] initialized

to monitor wave reflections from the body. Equation 5.1.1 is used to start an initial pulse with

b = 0.2, ε = 0.1, xc = 4, and yc = 0.

p = p∞ + εeln2
(x−xc)2+(y−yc)2

b2 (5.1.1)

The computational domain is taken to be [-15,15] x [0,15]. The symmetry condition is employed

along y = 0 and characteristic outflow conditions with grid stretching along y = 15 and in both

x directions. Grid stretching is employed to dampen all perturbations and introduce numerical

dissipation [28], thus absorbing boundary conditions are not needed. The domain contains

2074 cells and the case was run for second, third, fourth, and fifth order accurate (P 1 − P 4),

yielding 16,592 and 259,250 degrees of freedom per equation for P 1 and P 4 respectfully. The

case only requires solving the Euler equations (inviscid terms). The radius of the cylinder, r,

is 1 and data was recorded at two locations, both at radius r = 5 and angle θ = 90 and 180

degrees (points A and B respectfully), where the exact solution is known. Figure 5.1 shows the

pressure contours of the case at four different times for P 3, while figure 5.2 shows the pressure

disturbance (p′) histories, where p = p∞ + p′. From the figures it is clear that second order

www.manaraa.com

61

(a) t = 3 seconds (b) t = 5.1 seconds

(c) t = 7 seconds (d) t = 7.8 seconds

Figure 5.1 Pressure contours for acoustic cylinder case

methods cannot capture the effects completely, and even third order has difficulties. Fourth and

fifth orders, however, exhibit very good results, matching well with the exact solution at both

points and demonstrating the ability of the CPR CUDA code to capture the small disturbances

present in aeroacoustic type problems.

Larger and more complicated problems are desired to be solved as well. Consider a Selig

SD7003 airfoil at a low angle of attack and low Reynolds number. The flow at the airfoils surface

will separate, transition to turbulence, and reattach downstream. A fine grid is required at

the surface boundary with high-order solutions to capture all aspects of the flow. Figure 5.3

illustrates the computational mesh used at the surface. The far-field was placed significantly far

away (100 chord lengths) to eliminate any interaction from the boundary. The total number of

elements used in the calculations was 68,040, resulting in a total number of degrees-of-freedom

per equation of 1,837,080 and 4,354,560 for 3rd and 4th order runs respectfully. Simulations

were carried out at a free-stream Mach number M∞ = 0.2 with a chord based Reynolds number

of Rec = 60, 000 at an angle of attack α = 4 degrees. The simulation was ran for 17.5 non-

dimensional time (t = t∗/(c/U∞)) to eliminate any spurious transient data from start-up effects.

www.manaraa.com

62

(a) Point A (b) Point B

Figure 5.2 Pressure fluctuations (p′)

The solution was then time-averaged for a non-dimensional time of 8 to capture the mean flow

field. With a time-step of 0.000125 and 0.0001 for P 2 and P 3 respectfully, total iterations

numbered 1,000,000 to 1,250,000 to reach the appropriate averaged solution.

Figure 5.4 shows the Q-criterion colored by U-velocity for the SD7003 airfoil at different

orders of accuracy. The figure demonstrates the flow detaching itself from the airfoils surface

and transitioning to turbulence. Reconstruction of P 3 captures more fluid structures than that

of P 2, which is expected. Averaging the flow field gives more insight into the flow character-

istics, including a laminar separation bubble. In figure 5.5, the laminar separation region is

viewed on the upper surface, given by the blue coloring. Verification of bubble detachment

and reattachment is seen in table 5.3. Results from two sources [33, 10] are shown with the

results from the CPR code and good agreement is seen from all cases. For final verification of

this case, the mean coefficient of pressure (Cp = (p − p∞)/12ρ∞U
2
∞) distribution on the wing

surface are shown in figure 5.6 between the CPR code and the results in [33]. Once again, good

agreement is shown.

www.manaraa.com

63

Figure 5.3 Computational grid

(a) 3rd order (P 2) (b) 4th order (P 3)

Figure 5.4 Q-criterion colored by U-velocity

Figure 5.5 Mean u-velocity field

www.manaraa.com

64

Figure 5.6 Mean coefficient of pressure (Cp)

Table 5.3 Separation and reattachment locations

Case Separation Reattachment

Galbraith et. al. [10] 0.223 0.65

Ying et. al. [33] 0.227 0.685

CPR P 2 0.22 0.645

CPR P 3 0.221 0.683

www.manaraa.com

65

5.2 CUDA performance

The results presented in this thesis compared one core of a CPU to that of a GPU. The CPU

tested was an Intel Xeon X5650 at 2.67 GHz and the GPUs tested were a Tesla C2070 and Tesla

K20x (or Kepler). The Kepler is a new generation card with six times the number of cores than

the C2070. All cases presented used double precision computing with proper optimization flags

employed for both CPU and GPU code compilation. Optimization of the GPU code required

three stages, and two of the three optimization stages are shown in figure 5.7. The kernel,

GPU INV Flux as discussed in chapter 4, was originally completed with three separate

kernels: PROJECTION, CORRECTION, and RES to compute the projection of the flux(
Π
[
~∇ · ~F (Qhi)

])
, the correction at the faces (δi), and update the residual. The majority of

computational time was spent in the kernel RES from profiling results, hence optimizations

were completed within this kernel (see GPU INV Flux part 6 and CPU RES Update in

chapter 4 for residual optimization). A noticeable performance increase of the RES kernel was

demonstrated and is shown in figure 5.7 (b). Without optimizations, 83% of the calculation was

spent in calculating the residual, which was reduced to 57% after optimizing the CUDA code.

However, the three individual kernels yields three separate writes into global memory, and if

this memory is necessary for computations in a later kernel, it requires re-loading the memory.

In addition, if the same memory is required for computations in each kernel, then the memory

is loaded three times, creating a redundancy in memory access. The third optimization sought

to merge the three kernels: PROJECTION, CORRECTION, and RES, into one kernel

(FLUX). Joining the three kernels could potentially decrease computational time by limiting

memory access and transfers. The end result of the merge for inviscid code performance is

shown in figure 5.8, where the kernel FLUX is the kernel GPU INV Flux from chapter 4. It

should be noted that combining the percentages for PROJECTION, CORRECTION, and

RES from figure 5.7 (b) yields a value of 87%, while the kernel FLUX from figure 5.8 is 82%.

Hence the combination of the kernels is more efficient than computing the three individual

kernels. Similar optimizations of profiling kernel computations were employed for the viscous

flux until an optimal configuration was found.

www.manaraa.com

66

(a) No optimizations (b) With optimizations

Figure 5.7 Profiling for CUDA optimizations

Figure 5.8 Complete optimization profile

Figure 5.9 Performance of GPU code compared to CPU code (inviscid) at P 1 to P 4

www.manaraa.com

67

Figure 5.10 Performance of GPU code compared to CPU code (viscous) at P 1 to P 4

The performance of the GPU CUDA code compared to the CPU code for the inviscid flux

is shown in figure 5.9. Peak speed performance is viewed at P 3 with 42 times faster at no

optimizations and 63 times faster with optimizations, while P 1 demonstrated the best increase

in performance when comparing the optimized to the non-optimized CUDA code (just over 2

times performance gain). The speed results for the viscous flux are shown in figure 5.10 for the

initial write and an optimized code, which was run with two different GPUs (Tesla C2070 and

Kepler). Peak performance is again viewed at P 3 with just over 35 times faster at the optimized

Tesla card. Utilization of the new Kepler card demonstrates additional performance increases,

achieving nearly 70 times faster than the CPU at P 3. Inviscid performance is superior to

the viscous performance due to higher memory usage, memory reads and access, and shared

memory allocation required by the viscous portion of the code. With current GPU architecture,

this issue cannot be avoided, and explains why similar performance results are not seen from

inviscid and viscous runs.

www.manaraa.com

68

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

This thesis has demonstrated the efficient implementation of GPU CUDA computing with

the high-order CPR method. Applying GPUs to a high-order CFD method yields huge saves in

computational cost when compared to the CPU implementation, gaining orders of magnitude

in computational speeds (twenty to seventy times as shown), allowing solutions to be generated

quickly and computed more frequently. Similar CFD methods with local cell reconstruction,

like that of CPR, could benefit further from GPU computing, depending on the efficiency of

the method. Hence, the application of GPUs to current CFD solvers is a viable solution to

reduce computational costs, especially solvers which use high-order methods.

Running large simulations on desktop machines in the past was unrealistic, as significant

computational power was needed, which was supplied by CPU servers. However, as demands

for computational power increase, CPU servers continue to expand, increasing the required

space to house them, power to supply them, and money to buy them. GPUs have made

desktop computations of large simulations feasible with high computational power, which is

appealing to small teams with high performance computing requirements without the support

for CPU servers. Additionally, GPU workstations can support a single GPU card to eight total,

furthering the workstations computational power. Finally, next generations GPUs illustrate

more computational power when compared to current generation cards (see figure 5.10), leading

to even faster computing speeds. The gap in computing speeds from current to next generation

cards is noticeable, and demonstrates a promising future for computing with CUDA.

Full utilization of GPU computing is not without flaws. The results presented in this thesis

required a re-write of existing C++ code into CUDA C++, which numbered nearly 4,000

lines of new code. CPU data was restructured for efficient use with GPU computing and

algorithms were manipulated and developed further for GPUs, since algorithms that excel with

www.manaraa.com

69

CPU implementations can yield performance degradation for GPU computing. Furthermore,

optimal implementation of GPU CUDA requires complete knowledge of GPU architecture and

memory types, and as discussed in Chapter 5, multiple optimization steps were completed to

achieve the optimal results, increasing development time. In addition, memory usage must

be monitored, as new GPU cards only contain 6 giga-bytes of memory, limiting the problem

size. Considerations for number of blocks, threads, and shared memory size is also needed

(see Chapter 4). However, the performance benefits illustrated in this thesis demonstrate that

optimized GPU implementation is significant due to computational time saved per simulation.

As GPUs continue to enhance, the existing GPU CUDA CPR code can be optimized further

and continue to improve on performance. The developed GPU code only applies hexahedral

cells in the domain, limiting the computational mesh. Development of tetrahedral and prism

type cells for the GPU will generalize the required mesh, and allow computation across mixed-

cell grids. In addition, grid adaptation and order adaptation would present a difficult challenge

for GPU CUDA. Future work and development of GPUs with all Aerospace sciences (not only

CFD) is strongly recommended. Solving problems orders of magnitude faster than existing

applications should appeal to all researchers and developers, especially those without the sup-

port of CPU servers. Application of GPUs provides an interesting and exciting problem, which

presents potentially huge performance pay-offs in all aspects of the Aerospace sciences.

www.manaraa.com

70

APPENDIX A. SAMPLE CUDA CODE

This appendix contains an example of a GPU CUDA program. The code will be discussed

step by step, with the intent to explain every aspect, so readers can further understand the

CUDA implementation as discussed in Chapter 4.

One-dimensional Lagrange interpolation

This GPU code completes a simple one-dimensional polynomial interpolation. The threads

on the GPU will act on each data point for interpolation, while each block will conform to each

cell in the domain. As an example, if the number of cells, nc = 10, and there exist 3 points

per cell for interpolation, nsp = 3, then the GPU will run with 10 blocks, each containing 3

threads, for a total of 30 threads in the domain. The threads and blocks will be t = [3] and

b = [10].

Algorithm GPU Sample Kernal

n = threadIdx.x

k = blockIdx.x

shared double tmps[3]

. First load in data points into all shared memory

tmps[n] = Qt[n+ k ∗ nsp]

Ql = 0

syncthreads

for m = 0 to (nsp − 1) do

. Load in Lagrange coefficient

cl = ct[n+m ∗ nsp]

. Form the polynomial on each thread

Ql = Ql + cl ∗ tmps[m+ k ∗ nsp]

end for

. Store the result in global memory

Qg[n+ k ∗ nsp] = Ql

www.manaraa.com

71

In the algorithm, n will run through all solution points in each of the k, cells at the same

time. The shared memory has the lifetime of each block, so it only needs to be allocated for

the amount of memory it will hold in each block, and since each block is a cell which has 3

data points within it, the allocation size only needs to be nsp, or 3 in this case. The data

points reside in textured memory in the Qt array which has size nsp ∗ nc = 30. Each thread

in each block reads the corresponding data from the array and stores it into shared memory.

Thread synchronization is required to ensure all the data is loaded properly into the shared

memory array before operations are carried on it. Next, the loop through nsp is needed to

construct the polynomial. Each thread loads in the proper Lagrange coefficient from textured

memory ct (with size nsp ∗ nsp = 9) and stores it into the local memory of each thread. Then,

the polynomial is built from the Lagrange coefficient in local memory and the data points in

shared memory. Finally, the loop is finished, and the results are written to global memory. The

write to global memory is coalesced since there is one write per thread and access is aligned

properly.

www.manaraa.com

72

APPENDIX B. DERIVATION OF CORRECTION COEFFICIENTS

This appendix derives the correction coefficients as shown in table 3.1. Recall equation

(3.1.12), ∫
∂Vi

W [Fn] dS =

∫
Vi

WδidV,

where the integration is completed over an element i with volume Vi, [Fn] is the normal flux

difference, δi is the correction function, and W is the weighting function (chosen to be Lagrange

interpolation polynomials). Consider a one-dimensional cell for P 2 reconstruction as illustrated

in figure B.1. The cell contains a left and right boundary with three solution points located

at x1 = −1, x2 = 0, and x3 = 1. A Lagrange interpolation polynomial is formulated at each

point,

L1 =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
,

L2 =
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
,

L3 =
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
,

where x is the solution point position. Lagrange polynomials have the property that Li(xj) = 1

when i = j, but when i 6= j then Li(xj) = 0. The correction function is formulated by a linear

combination of the correction coefficients and the Lagrange polynomials,

δi = α1L1 + α2L2 + α3L3,

where αj is the correction value at point j. To formulate the correction values, the correction

function is employed with equation (3.1.12) and set equal to the value of the weighting function

at the left or right boundary [12]. Due to symmetry, αL,j = αR,k+2−j where k is the order of

www.manaraa.com

73

Figure B.1 One-dimensional element for P 2

accuracy [12]. The formulation for solving the correction coefficients takes the following form,

∫
Vi

WδidV =


∫ 1
−1 L1L1

∫ 1
−1 L1L2

∫ 1
−1 L1L3∫ 1

−1 L2L1

∫ 1
−1 L2L2

∫ 1
−1 L2L3∫ 1

−1 L3L1

∫ 1
−1 L3L2

∫ 1
−1 L3L3



αL,1

αL,2

αL,3

 =


L1(−1)

L2(−1)

L3(−1)

 .

Solving the above system will result in the values at P 2 in table 3.1. Similar operations were

completed to derive the coefficients for additional orders of accuracy. The coefficients found

are employed to correct the flux difference through the flux points at the cell faces.

www.manaraa.com

74

BIBLIOGRAPHY

[1] J. Andren, H. Gao, M. Yano, D. Darmofal, C. Ollivier-Gooch, & Z. J. Wang. A comparison

of higher-order methods on a set of canonical aerodynamics applications. AIAA, 2011–

3230, 2011.

[2] J. Barth & P. O. Frederickson. High-order solution of the Euler equations on unstructured

grids using quadratic reconstruction. AIAA, 1990–0013, 1990.

[3] F. Bassi & S. Rebay. GMRES discontinuous Galerkin solution of the compressible Navier-

Stokes equations. Lecture Notes in Computational Sciences and Engineering 11, 197–208,

2000.

[4] F. Bassi & S. Rebay. High-order accurate discontinuous finite element solution of the 2D

Euler equations. Journal of Computational Physics 138, 251–285, 1997.

[5] C. E. Baumann & T. J. Oden. A discontinuous hp finite element method for the Euler and

Navier-Stokes equations. International Journal for Numerical Methods in Fluids. 31 (1),

79–95, 1999.

[6] R. Biswas & R. C. Strawn. A dynamic mesh adaptation procedure for unstructured hex-

ahedral grids. AIAA, 1996–0027, 1996.

[7] B. Cockburn & C. W. Shu. The Runge-Kutta discontinuous Galerkin method for conser-

vation laws V: multidimensional systems. Journal of Computational Physics 141, 199–224,

1998.

[8] A. Corrigan, F. Camelli, & Löhner. Running unstructured grid based CFD solvers on

modern graphics hardware. AIAA, 2009–4001, 2009.

www.manaraa.com

75

[9] M. Delanaye, & Y. Liu. Quadratic reconstruction finite volume schemes on 3D arbitrary

unstructured polyhedral grids. AIAA, 1999–3529-CP, 1999.

[10] M. Galbraith, & M. Visbal. Implicit large Eddy simulation of low-Reynolds number flows

past the SD7003 airfoil. AIAA, 2008–225, 2008.

[11] M. Hoffmann, C-D. Munz, & Z. J. Wang. Efficient implementation of the CPR formulation

for the Navier-Stokes equations on GPUs. ICCFD, 7-2603, 2012.

[12] H. T. Huynh. A flux reconstruction approach to high-order schemes including discontinu-

ous Galerkin methods. AIAA, 2007-4079, 2007.

[13] D. A. Jacobsen, J. C. Thibault, & I. Senocak. MPI-CUDA implementation for massively

parallel incompressible flow computations on Multi-GPU clusters. AIAA, 2010–522, 2010.

[14] D. A. Kopriva. A staggered-grid multidomain spectral method for the compressible navier-

stokes equations. Journal of Computational Physics 143, 125–158, 1998.

[15] D. A. Kopriva & J. H. Kolias. A conservative staggered-grid Chebyshev multidomain

method for compressible flows. Journal of Computational Physics 125, 244, 1996.

[16] Y. Liu, M. Vinokur, & Z. J. Wang. Discontinuous spectral difference method for conser-

vation laws on unstructured grids Journal of Computational Physics 216, 780–801, 2006.

[17] Y. Liu, M. Vinokur, & Z. J. Wang. Three-dimensional high-order spectral finite volume

method for unstructured grids, AIAA, 2003-3837, 2003.

[18] NVIDIA. CUDA C Best Practices Guide. Ver. 4.1.

[19] NVIDIA. NVIDIA CUDA C Programming Guide. Ver. 5.0.

[20] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Jour-

nal of Computational Physics 43, 357–372, 1981.

[21] V. V. Rusanov. Calculation of interaction of non-steady shock waves with obstacles. Jour-

nal of Computational Mathematical Physics USSR 1, 267–279, 1961.

www.manaraa.com

76

[22] C. W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for

hyperbolic conservation laws, in advanced numerical approximation of nonlinear hyperbolic

equations. Lecture Notes in Mathematics, 1697, P. 325, 1998.

[23] C. W. Shu. Total-variation-diminishing time discretizations. SIAM Journal on Scientific

and Statistical Computing. 9, 1073–1084, 1988.

[24] Y. Sun & Z. J. Wang. High-order multidomain spectral difference method for the navier

stokes equations. AIAA, 2006–301, 2006.

[25] Y. Sun & Z. J. Wang. High-order multidomain spectral difference method for the Navier-

Stokes equations on unstructured hexahedral grids. Journal of Computational Physics

2 (2), 301–333, 2007.

[26] J. C. Tannehill, A. A. Anderson, & R. H. Pletcher. Computational Fluid Mechanics and

Heat Transfer. Vol. 2, 1997.

[27] J. C. Thibault & I. Senocak. CUDA implementation of a Navier-Stokes solver on MultiGPU

desktop platforms for incompressible flows. AIAA, 2009–758, 2009.

[28] M. R. Visbal & D. V. Gaitonde. Very high-order spatially implicit schemes for computa-

tional acoustics on curvilinear meshes. Journal of Computational Acoustics, 9 43), 1259–

1286, 2001.

[29] Z. J. Wang. Adaptive high-order methods in computational fluid dynamics Ch.15, P. 424,

2011.

[30] Z. J. Wang. Spectral (finite) volume method for conservation laws on unstructured grids:

basic formulation. Journal of Computational Physics 178, 210–251, 2002.

[31] Z. J. Wang & H. Gao. A residual-based procedure for hp-adaptation on 2d hybrid meshes.

AIAA, 2011–492, 2011.

www.manaraa.com

77

[32] Z. J. Wang, T. Haga, & H. Gao. A high-order unifying discontinuous formulation for the

Navier-Stokes equations on 3D mixed grids. Mathematical Modeling of Natural Phenomena,

6 (3), 28–56, 2011.

[33] Y. Zhou & Z. J. Wang. Effects of surface roughness on laminar separation bubble over a

wing at a low-Reynolds number. AIAA, 2011–736, 2011.

[34] O. C. Zienkiewicz & R. C. Tayler. The Finite Element Method The Basics. Vol. 1, 2000.

	2013
	The Efficient Implementation of Correction Procedure via Reconstruction with GPU Computing
	Ben James Zimmerman
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	2. GPU CUDA COMPUTING
	2.1 GPU architecture
	2.2 GPU optimization

	3. HIGH-ORDER CPR METHOD
	3.1 Correction procedure via reconstruction
	3.1.1 CPR formulation
	3.1.2 High-order elements

	3.2 Riemann solver
	3.2.1 Rusanov flux
	3.2.2 Roe flux

	3.3 Time-stepping

	4. CUDA IMPLEMENTATION
	4.1 Data initialization
	4.2 CUDA implementation
	4.2.1 General CUDA kernels
	4.2.2 Inviscid CUDA code
	4.2.3 Viscous CUDA code
	4.2.4 Additional CUDA kernels

	5. RESULTS
	5.1 CUDA verification
	5.2 CUDA performance

	6. CONCLUSIONS AND FUTURE WORK
	A. SAMPLE CUDA CODE
	B. DERIVATION OF CORRECTION COEFFICIENTS
	BIBLIOGRAPHY

